The long and winding road

Calculus Level 4

We have a vector field F : R 2 R 2 \vec{F} : \mathbb{R}^2 \to \mathbb{R}^2 such that F ( x , y ) = ( 2 x sin y , x 2 cos y ) \vec{F}(x,y)=(2x \sin y,x^2 \cos y) . Let:

  • C 1 C_1 be the segment of y = x 3 y=x^3 from ( 0 , 0 ) (0,0) to ( 1 , 1 ) (1,1)
  • C 2 C_2 be the line segment from ( 1 , 1 ) (1,1) to ( 2 , 4 ) (2,4)
  • C 3 C_3 be the line segment from ( 2 , 4 ) (2,4) to ( π , π 2 ) \left(\pi,\frac{\pi}{2}\right)
  • C = C 1 C 2 C 3 C=C_1 \cup C_2 \cup C_3

Find C F d r \displaystyle \int\limits_C \vec{F} \cdot \mathrm{d}\vec{r} to four decimal places.


The answer is 9.8696.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Notice that ( x 2 sin y ) = F \nabla(x^2 \sin y)=\vec{F} , so F \vec{F} is conservative, i.e., the integral C F d r \displaystyle \int\limits_{C} \vec{F} \cdot \mathrm{d}\vec{r} is independent of the path, we only need the first and the last point of the path C C . So, let's take the line segment that goes from ( 0 , 0 ) (0,0) to ( π , π 2 ) \left(\pi,\frac{\pi}{2}\right) . Then the integral is: C F d r = x 2 sin y ( 0 , 0 ) ( π , π 2 ) = π 2 sin π 2 0 2 sin 0 = π 2 \begin{aligned} \int\limits_C \vec{F} \cdot \mathrm{d} \vec{r} = x^2\sin y \Bigr|_{(0,0)}^{\left(\pi,\frac{\pi}{2}\right)} = \pi^2 \sin \dfrac{\pi}{2} - 0^2\sin 0=\boxed{\pi^2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...