The long way of writing it out #2

Calculus Level pending

δ ( m ) = lim x ( 1 + 2 m 2 x ) x m × ( n = 0 ( 0 t n e t d t ) 1 ) m \delta(m) = \lim_{x \to \infty} \sqrt{\left( 1+\frac{2m^2}{x} \right) ^{\frac{x}{m}}} \times \left( \sum_{n=0} ^ {\infty} \left( \int_0 ^ {\infty} t^ne^{-t}dt \right)^{-1} \right)^m

Given δ ( m ) \delta(m) , express δ ( 2 ln ( p ) + log ( 11 ) log ( e ) ) \delta' \left(2\ln(p)+\frac{\log(11)}{\log(e)} \right) in terms of p p

242 p 4 242p^4 π 2 p \frac{\pi^2}{p} 2 e 4 p + 1 2e^{4p+1} p p

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The first term of the product is e 2 m = e m \sqrt {e^{2m}}=e^m . The second term is

( n = 0 1 n ! ) m = e m \left (\displaystyle \sum_{n=0}^\infty \frac{1}{n!}\right ) ^m=e^m .

Hence the given expression becomes δ ( m ) = e 2 m \delta (m)=e^{2m} . So δ ( m ) = 2 e 2 m \delta'(m) =2e^{2m} .

Hence δ ( 2 ln p + log 11 log e ) = 2 e ln ( 121 p 4 ) = 242 p 4 \delta' \left (2\ln p+\frac{\log 11}{\log e}\right ) =2e^{\ln (121p^4)}=\boxed {242p^4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...