The longer

Calculus Level 5

0 1 0 1 0 1 3 x + y + z d x d y d z = A B ln C D \int_0^1 \int_0^1 \int_0^1\! \dfrac{3}{x+y+z} \: \mathrm{d}x \: \mathrm{d}y \: \mathrm{d}z = \frac{A}{B} \ln \frac{C}{D}

The above equation holds true for positive integers A A , B B , C C , and D D such that gcd ( A , B ) = gcd ( C , D ) = 1 \gcd(A,B) = \gcd(C,D) = 1 and that the values of C C and D D are minimized.

Determine A + B + C + D A+B+C+D .


Here is a generalized version .


The answer is 54.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Efren Medallo
Jun 8, 2017

This won't be a thorough solution, but rather of rundown of the steps needed to do to be able to solve the problem. Other solutions are very welcome :)

Let us take note that 0 e a x d x = 1 a \displaystyle \int_0^{\infty} e^{-ax} \mathrm{d}x = \frac{1}{a} , right?

From this, we can infer that the integrand could be interpreted as the definite integral of a dummy variable t t , such as

3 x + y + z = 0 e x + y + z 3 t d t \frac{3}{x+y+z} = \displaystyle\int_0^{\infty} e^{ - \frac{x+y+z}{3}t} \mathrm{d}t

This now changes the integral to

0 1 0 1 0 1 3 x + y + z d x d y d z = 0 1 0 1 0 1 d x d y d z 0 e x + y + z 3 t d t \displaystyle \int_0^1 \int_0^1 \int_0^1 \! \dfrac{3}{x+y+z} \:\: \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_0^1 \int_0^1 \int_0^1 \! \mathrm{d}x \mathrm{d}y \mathrm{d}z \int_0^{\infty} \! e^{ - \frac{x+y+z}{3}t} \: \mathrm{d}t

We can now change the order of integration to simplify this to

0 ( 0 1 e t 3 x d x ) 3 d t \displaystyle \int_0^{\infty} (\int_0^1 e^{- \frac{t}{3}x} \mathrm{d}x)^3 \mathrm{d}t

0 ( 1 e t 3 t 3 ) 3 d t \displaystyle \int_0^{\infty} (\frac{1 - e^{- \frac{t}{3}}}{\frac{t}{3}})^3 \mathrm{d}t

0 ( 3 ( 1 e t 3 ) t ) 3 d t \displaystyle \int_0^{\infty} (\frac{3 (1-e^{-\frac{t}{3}})}{t})^3 \mathrm{d}t

0 27 t 3 81 e t / 3 t 3 + 81 e 2 t / 3 t 3 27 e t t 3 d t \displaystyle \int_0^{\infty} \frac{27}{t^3} - \frac{81e^{-t/3}}{t^3} + \frac{81e^{-2t/3}}{t^3} - \frac{27e^{-t}}{t^3} \mathrm{d}t

This will ultimately give us 9 2 ln 27 16 \frac{9}{2} \ln \frac {27}{16} , such that 9 + 2 + 27 + 16 = 54 9+2+27+16 = 54 .

How u r evaluating integrals ?

Will it not give negative gamma function ?

John Eidenberg - 4 years ago

Really amazing proof. Can I ask how you got that origin idea to use e^-ax. Please reply.

Sanjay Kumar - 3 years, 11 months ago

That "ultimately" is very slow. I was hoping that the calculations would be much easier in an elegant proof.

Prathik Diwakar - 3 years, 11 months ago
Mark Hennings
Jun 10, 2017

Rather than struggling with the singularities (the details behind the word "ultimately") in Efren's proof, it is easier to do this directly: 0 1 3 x + y + z d z = [ 3 ln ( x + y + z ) ] z = 0 1 = 3 ln ( x + y + 1 ) 3 ln ( x + y ) 0 1 ( 0 1 3 x + y + z d z ) d y = 0 1 [ 3 ln ( x + y + 1 ) 3 ln ( x + y ) ] d y = 3 [ ( x + y + 1 ) ln ( x + y + 1 ) ( x + y + 1 ) ( x + y ) ln ( x + y ) + ( x + y ) ] y = 0 1 = 3 ( x + 2 ) ln ( x + 2 ) 6 ( x + 1 ) ln ( x + 1 ) + 3 x ln x 0 1 0 1 0 1 3 x + y + z d x d y d z = 3 0 1 [ ( x + 2 ) ln ( x + 2 ) 2 ( x + 1 ) ln ( x + 1 ) + x ln x ] d x = 3 [ 1 2 ( x + 2 ) 2 ln ( x + 2 ) 1 4 ( x + 2 ) 2 ( x + 1 ) 2 ln ( x + 1 ) + 1 2 ( x + 1 ) 2 + 1 2 x 2 ln x 1 4 x 2 ] 0 1 = 3 ( ( 9 2 ln 3 9 4 4 ln 2 + 2 1 4 ) ( 2 ln 2 1 + 1 2 ) ) = 3 ( 9 2 ln 3 4 ln 2 2 ln 2 ) = 9 2 ln 27 16 \begin{aligned} \int_0^1 \frac{3}{x+y+z}\,dz & = \Big[3\ln(x+y+z)\Big]_{z=0}^1 \; = \; 3\ln(x+y+1) - 3\ln(x+y) \\ \int_0^1\left(\int_0^1 \frac{3}{x+y+z}\,dz\right)\,dy & = \int_0^1 \big[3\ln(x+y+1) - 3\ln(x+y)\big]\,dy \\ & = 3\Big[(x+y+1)\ln(x+y+1) - (x+y+1) - (x+y)\ln(x+y) + (x+y)\Big]_{y=0}^1 \\ & = 3(x+2)\ln(x+2) - 6(x+1)\ln(x+1) + 3x\ln x \\ \int_0^1 \int_0^1 \int_0^1 \frac{3}{x+y+z}\,dx\,dy\,dz & = 3\int_0^1 \big[(x+2)\ln(x+2) - 2(x+1)\ln(x+1) + x\ln x\big]\,dx \\ & = 3\Big[ \tfrac12(x+2)^2\ln(x+2) - \tfrac14(x+2)^2 - (x+1)^2\ln(x+1) + \tfrac12(x+1)^2 + \tfrac12x^2\ln x - \tfrac14x^2\Big]_0^1 \\ & = 3\Big(\big(\tfrac92\ln3 - \tfrac94 - 4\ln2 + 2 - \tfrac14\big) - \big(2\ln2 - 1 + \tfrac12\big)\Big) \; = \; 3\big(\tfrac92\ln3 -4\ln2 - 2\ln2\big) \\ & = \tfrac92\ln\tfrac{27}{16} \end{aligned}

Not a good question.

Sanjay Kumar - 3 years, 11 months ago

Log in to reply

I saw the solution without answering as I thought there would be a more elegant solution. Now I will try the general version.

Sanjay Kumar - 3 years, 11 months ago

Not really, both are equally maddening, but at the very least, Efren's proof atleast helps in the bigger, next problem.

Prathik Diwakar - 3 years, 11 months ago

In step nö 4 -(x+y+1) + (x+y)= -1 I think you missed it

Akhilesh Vibhute - 3 years, 10 months ago

Log in to reply

No I did not miss it. Since it is constant, it cancels out when we evaluate at y = 1 y=1 and y = 0 y=0 and subtract...

Mark Hennings - 3 years, 10 months ago

Log in to reply

Sorry my bad, I can't believe I did that silly mistake

Akhilesh Vibhute - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...