The Longest Side

Geometry Level 4

What is the length of the longest possible side of a triangle with a perimeter of 20, an area of 18, and a circumradius of 4? If the length is expressed as p + q r \frac{p+\sqrt q} r , where p , q , r p,q,r are integers with q q is square-free, submit p + q + r p+q+r .


The answer is 70.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let a a , b b , c c be the lengths of the three sides of the triangle. Denote the semiperimeter of the triangle by s s and its circumradius by R R . Let a + b = S a+b=S and a b = P ab=P . Then we have

a + b + c = 20 c = 20 a b c = 20 S ( 1 ) a+b+c=20\Leftrightarrow c=20-a-b\Leftrightarrow c=20-S \ \ \ \ \ (1) By Heron’s formula for the area of the triangle,

[ A B C ] = s ( s a ) ( s b ) ( s c ) 10 ( 10 a ) ( 10 b ) ( a + b 10 ) = 18 10 ( 100 10 ( a + b ) + a b ) ( a + b 10 ) = 18 2 10 ( 100 10 S + P ) ( S 10 ) = 324 ( 2 ) \begin{aligned} \left[ ABC \right]=\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)} & \Rightarrow \sqrt{10\left( 10-a \right)\left( 10-b \right)\left( a+b-10 \right)}=18 \\ & \Leftrightarrow 10\left( 100-10\left( a+b \right)+ab \right)\left( a+b-10 \right)={{18}^{2}} \\ & \Leftrightarrow 10\left( 100-10S+P \right)\left( S-10 \right)=324 \ \ \ \ \ (2) \\ \end{aligned} Again, for the triangle's area we have

[ A B C ] = a b c 4 R ( 1 ) 18 = P ( 20 S ) 4 × 4 P = 288 20 S ( 3 ) \left[ ABC \right]=\dfrac{abc}{4R}\overset{\left( 1 \right)}{\mathop{\Rightarrow }}\,18=\dfrac{P\left( 20-S \right)}{4\times 4}\Leftrightarrow P=\dfrac{288}{20-S} \ \ \ \ \ (3) Substituting, ( 2 ) ( 3 ) 10 ( 100 10 S + 288 20 S ) ( S 10 ) = 324 25 S 3 1000 S 2 + 13301 S 58820 = 0 ( 5 S 68 ) ( 5 S 2 132 S + 865 ) = 0 S = 68 5 , or S = 66 ± 31 5 \begin{aligned} \left( 2 \right) & \overset{\left( 3 \right)}{\mathop{\Leftrightarrow }}\,10\left( 100-10S+\dfrac{288}{20-S} \right)\left( S-10 \right)=324 \\ & \Leftrightarrow 25{{S}^{3}}-1000{{S}^{2}}+13301S-58820=0 \\ & \Leftrightarrow \left( 5S-68 \right)\left( 5{{S}^{2}}-132S+865 \right)=0 \\ & \Leftrightarrow S=\dfrac{68}{5}\text{, or }S=\dfrac{66\pm \sqrt{31}}{5} \\ \end{aligned}

For S = 68 5 S=\dfrac{68}{5} , ( 3 ) P = 45 \left( 3 \right)\Leftrightarrow P=45 .

Now, we can find the values of a a and b b , solving the quadratic equation x 2 S x + P = 0 x 2 68 5 x + 45 = 0 {{x}^{2}}-Sx+P=0\Leftrightarrow {{x}^{2}}-\dfrac{68}{5}x+45=0 which gives a , b = 34 ± 31 5 a,b=\dfrac{34\pm \sqrt{31}}{5} Using ( 1 ) (1) , we find c = 20 68 5 c = 32 5 c=20-\dfrac{68}{5}\Leftrightarrow c=\dfrac{32}{5} If we take S = 66 + 31 5 S=\dfrac{66+\sqrt{31}}{5} , or S = 66 31 5 S=\dfrac{66-\sqrt{31}}{5} , repeating the same process we get the same three values for the side-lengths of the triangle (perhaps in different order):

34 + 31 5 , 34 31 5 , 32 5 \dfrac{34+\sqrt{31}}{5}, \ \ \ \ \ \dfrac{34-\sqrt{31}}{5}, \ \ \ \ \ \dfrac{32}{5} Thus, the length of the longest possible side is 34 + 31 5 \dfrac{34+\sqrt{31}}{5} For the answer, p = 34 p=34 , q = 31 q=31 , r = 5 r=5 , thus, p + q + r = 70 p+q+r=\boxed{70} .

Excellent solution! But there is a typo, where you typed.... a , b = 35 ± 31 5 a,b = \dfrac{35 \pm\sqrt{31}}{5} I believe you mean a , b = 34 ± 31 5 a,b = \dfrac{34 \pm \sqrt{31}}{5}

Michael Huang - 3 months, 1 week ago

Log in to reply

Thank you Michael, I edited it.

Thanos Petropoulos - 3 months, 1 week ago
David Vreken
Jan 17, 2021

From the perimeter equation P = a + b + c P = a + b + c , we know that:

a + b + c = 20 a + b + c = 20

From the circumradius equation 2 R = a b c 2 T 2R = \cfrac{abc}{2T} , we know that 2 4 = a b c 2 18 2 \cdot 4 = \cfrac{abc}{2 \cdot 18} , which rearranges to:

a b c = 288 abc = 288

By Heron's formula , T = s ( s a ) ( s b ) ( s c ) T = \sqrt{s(s - a)(s - b)(s - c)} . Substituting s = 1 2 P = 1 2 20 = 10 s = \frac{1}{2}P = \frac{1}{2} \cdot 20 = 10 and T = 18 T = 18 gives 18 = 10 ( 10 a ) ( 10 b ) ( 10 c ) 18 = \sqrt{10(10 - a)(10 - b)(10 - c)} , which rearranges to 162 5 = 1000 100 ( a + b + c ) + 10 ( a b + a c + b c ) a b c = 1000 100 ( 20 ) + 10 ( a b + a c + b c ) 288 \cfrac{162}{5} = 1000 - 100(a + b + c) + 10(ab + ac + bc) - abc = 1000 - 100(20) + 10(ab + ac + bc) - 288 , so that a b + a c + b c = 3301 25 ab + ac + bc = \cfrac{3301}{25} .

Now ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + a c + b c ) (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) , and substituting the above values gives 2 0 2 = a 2 + b 2 + c 2 + 2 3301 25 20^2 = a^2 + b^2 + c^2 + 2 \cdot \cfrac{3301}{25} which rearranges to:

a 2 + b 2 + c 2 = 3398 25 a^2 + b^2 + c^2 = \cfrac{3398}{25}

From a + b + c = 20 a + b + c = 20 we know that c = 20 a b c = 20 - a - b , and substituting this into a 2 + b 2 + c 2 = 3398 25 a^2 + b^2 + c^2 = \cfrac{3398}{25} and solving for b b gives b = 1 10 ( 75 a 2 + 1000 a 3204 5 a + 100 ) b = \frac{1}{10} (\sqrt{-75 a^2 + 1000 a - 3204} - 5a + 100) , and substituting c c and then b b into a b c = 288 abc = 288 and then rearranging gives:

25 a 3 500 a 2 + 3301 a 7200 = ( 5 a 32 ) ( 5 a 2 68 a + 225 ) = 0 25a^3 - 500a^2 + 3301a - 7200 = (5a - 32)(5a^2 - 68a + 225) = 0

The three solutions for a a , which correspond to the three possible sides of the triangle, are a = 32 5 a = \cfrac{32}{5} and a = 34 ± 31 5 a = \cfrac{34 \pm \sqrt{31}}{5} , the largest of which is a = 34 + 31 5 a = \cfrac{34 + \sqrt{31}}{5} .

Therefore, p = 34 p = 34 , q = 31 q = 31 , r = 5 r = 5 , and p + q + r = 70 p + q + r = \boxed{70} .

You already have a + b + c = 20 a + b + c = 20 , a b c = 288 abc = 288 and a b + a c + b c = 3301 25 ab + ac + bc = \frac{3301}{25} .

By Vieta's formula , a , b , c a,b,c are roots of the cubic polynomial X 3 20 X 2 + 3301 25 X 288 = 0 1 25 ( 5 X 32 ) ( 5 X 2 68 X + 225 ) = 0 X = 32 5 , 34 ± 31 5 X^3 - 20X^2 + \dfrac{3301}{25} X - 288 = 0 \quad \Leftrightarrow\quad \dfrac1{25}(5X-32)(5X^2 - 68X + 225) = 0 \quad \Leftrightarrow\quad X = \dfrac{32}5, \dfrac{34 \pm \sqrt{31}}5

Pi Han Goh - 3 months, 1 week ago

Log in to reply

Oh that's clever, thanks for sharing!

David Vreken - 3 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...