The Louvre

Geometry Level 5

The figure shows twelve identical unit equilateral triangles packed inside a bigger equilateral triangle.

The side length of the bigger equilateral triangle is 2 + 2 cos θ . 2+2\cos\theta.

Find θ . \theta.

1 0 10^\circ 2 0 20^\circ 3 0 30^\circ 4 0 40^\circ 5 0 50^\circ 6 0 60^\circ

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 9, 2018

Suppose that the length G H = x GH = x , and that A C F = θ \angle ACF = \theta . Applying the Sine Rule to the triangle B C G BCG , we see that ( 1 + x ) sin θ = sin ( 12 0 θ ) (1 + x)\sin\theta \; = \; \sin(120^\circ - \theta) If X X is the length of the large equilateral triangle, then X = 1 + A C = 1 + ( 2 + x ) sin ( 12 0 θ ) sin 6 0 X \; = \; 1 + AC \; = \; 1 + \frac{(2+x)\sin(120^\circ - \theta)}{\sin60^\circ} using the Sine Rule on A C F ACF . On the other hand X = 2 + A F = 2 + ( 2 + x ) sin θ sin 6 0 X \; = \; 2 + AF \; = \; 2 + \frac{(2+x)\sin\theta}{\sin60^\circ} Putting these last equations together, sin 6 0 = ( 2 + x ) [ sin ( 12 0 θ ) sin θ ] = ( 2 + x ) sin ( 6 0 θ ) \sin60^\circ \; = \; (2+x)\big[\sin(120^\circ - \theta) - \sin\theta\big] \; = \; (2+x)\sin(60^\circ-\theta) and hence we obtain the equation sin 6 0 sin ( 6 0 θ ) = 2 + x = sin ( 12 0 θ ) sin θ + 1 = sin ( 6 0 + θ ) sin θ + 1 sin 6 0 sin θ = sin ( 6 0 θ ) sin ( 6 0 + θ ) + sin θ sin ( 6 0 θ ) = 3 4 cos 2 θ + 1 4 3 sin 2 θ sin θ = sin ( 2 θ + 6 0 ) \begin{aligned} \frac{\sin60^\circ}{\sin(60^\circ - \theta)} & = \; 2+x \; = \; \frac{\sin(120^\circ - \theta)}{\sin\theta} + 1 \; = \; \frac{\sin(60^\circ+\theta)}{\sin\theta} + 1 \\ \sin60^\circ\sin\theta & = \; \sin(60^\circ-\theta)\sin(60^\circ+\theta) + \sin\theta\sin(60^\circ-\theta) \; = \; \tfrac34\cos2\theta + \tfrac14\sqrt{3}\sin2\theta \\ \sin\theta & = \; \sin(2\theta + 60^\circ) \end{aligned} and hence we have 2 θ + 6 0 = 18 0 θ 2\theta + 60^\circ = 180^\circ - \theta , and hence θ = 4 0 \theta = 40^\circ . From this we can now calculate that x = 1 2 sec 2 0 x = \tfrac12\sec20^\circ and that X = 2 + 2 cos 2 0 X = 2 + 2\cos20^\circ , making the answer 2 0 \boxed{20^\circ} .

Better than my solution, which was an ultimate trig bash that took me 30 minutes.

Michael Wang - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...