The magical number "8"

Find the remainder when 8 88 888 \large 8^{{88}^{888}} is divided by 888.


The answer is 544.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshat Sharda
Mar 12, 2016

We know, 888 = 8 × 3 × 37 888=8×3×37 .

Now, 8 8 8 888 ( m o d 8 ) = 0 \boxed{ 8^{88^{888}}\pmod{8}=0}

Finding 8 8 8 888 ( m o d 3 ) 8^{88^{888}}\pmod{3} ,

8 8 8 888 2 8 8 888 ( 1 ) 8 8 888 1 ( m o d 3 ) 8 8 8 888 ( m o d 3 ) = 1 8^{88^{888}}\equiv 2^{88^{888}} \equiv (-1)^{88^{888}} \equiv 1 \pmod 3 \\ \therefore \boxed{8^{88^{888}}\pmod 3=1}

Finding 8 8 8 888 ( m o d 37 ) 8^{88^{888}}\pmod{37} ,

8 ϕ ( 37 ) = 8 36 1 ( m o d 36 ) 8 8 888 ( m o d 36 ) 8^{\phi(37)}=8^{36}\equiv 1\pmod{36} \\ 88^{888} \pmod{36}

Now, 36 = 4 × 9 36=4×9 .

8 8 888 0 ( m o d 4 ) 8 8 888 7 888 ( m o d 9 ) ( 2 ) 888 8 296 1 ( m o d 9 ) 88^{888}\equiv 0\pmod{4} \\ 88^{888}\equiv 7^{888} \pmod 9 \\ (-2)^{888}\equiv 8^{296} \equiv 1\pmod 9

By applying Chinese Remainder Theorem to x 0 ( m o d 4 ) x 1 ( m o d 9 ) x \equiv 0 \pmod 4 \\ x\equiv 1 \pmod 9 We will get,

8 8 888 ( m o d 4 × 9 = 36 ) = 28 8 8 8 888 8 28 = ( 8 3 ) 9 8 ( m o d 37 ) 3 1 9 8 ( 6 ) 9 8 ( 6 ) ( 36 ) 4 ( 8 ) ( m o d 37 ) 48 11 26 ( m o d 37 ) 8 8 8 888 ( m o d 37 ) = 28 88^{888} \pmod {4×9=36}=28 \\ 8^{88^{888}}\equiv 8^{28} = (8^3)^9\cdot 8 \pmod{37} \\ 31^9\cdot 8\equiv (-6)^9\cdot 8 \equiv (-6)(36)^4(8) \pmod{37} \\ -48\equiv -11\equiv 26\pmod {37} \\ \therefore \boxed{ 8^{88^{888}}\pmod{37}=28}

Now adding Chinese Remainder Theorem to the expression in boxes, that is,

y 0 ( m o d 8 ) y 1 ( m o d 3 ) y 26 ( m o d 37 ) y\equiv 0\pmod 8 \\ y\equiv 1\pmod 3 \\ y\equiv 26 \pmod {37}

We will get,

8 8 8 888 ( m o d 888 ) = 544 8^{88^{888}}\pmod{888}=\boxed{ \boxed{544}}


P.S. : I'm very happy to solve this question :)

Exactly.....each and every step is precise and correct.....Great...

Mohit Gupta - 5 years, 3 months ago

Log in to reply

T H A N K S \mathcal{THANKS}

Akshat Sharda - 5 years, 3 months ago

Great!!! I also solved it by applying CRT.

Abdur Rehman Zahid - 5 years, 3 months ago

I did the exact same....

Aditya Kumar - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...