The Many Faces Of An Inequality

Algebra Level 5

x 2 + 2 x y + 4 y 2 + 4 y 2 + 6 y z + 9 z 2 + 9 z 2 + 3 x z + x 2 \sqrt{x^2+2xy+4y^2}+\sqrt{4y^2+6yz+9z^2}+\sqrt{9z^2+3xz+x^2}

If real numbers x , y , z x,y,z satisfy x + 2 y + 3 z = 2 3 x+2y+3z=2\sqrt3 , find the minimum value of the above expression.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Grant Bulaong
Aug 22, 2016

Let a = x a=x , b = 2 y b=2y , and c = 3 z c=3z . We have a + b + c = 2 3 a+b+c=2\sqrt3 . The expression then becomes a , b , c a 2 + a b + b 2 \sum\limits_{a,b,c} \sqrt{a^2+ab+b^2} . Note that a 2 + a b + b 2 = 1 2 ( a 2 + b 2 + ( a + b ) 2 ) a^2+ab+b^2=\dfrac{1}{2}\left(a^2+b^2+(a+b)^2\right) . By Cauchy-Schwarz Inequality, ( a 2 + b 2 ) ( a + b ) 2 2 (a^2+b^2)\geq\dfrac{(a+b)^2}{2} . Then a , b , c a 2 + a b + b 2 = a , b , c 1 2 ( a 2 + b 2 + ( a + b ) 2 ) a , b , c 1 2 ( ( a + b ) 2 2 + ( a + b ) 2 ) = a , b , c 3 4 ( a + b ) 2 = 3 2 [ ( a + b ) + ( b + c ) + ( c + a ) ] = 3 2 ( 2 ) ( 2 3 ) = 6 \sum\limits_{a,b,c} \sqrt{a^2+ab+b^2}=\sum\limits_{a,b,c} \sqrt{\dfrac{1}{2} \left(a^2+b^2+(a+b)^2\right) }\geq \sum\limits_{a,b,c} \sqrt{\dfrac{1}{2} \left(\dfrac{(a+b)^2}{2}+(a+b)^2\right)}=\sum\limits_{a,b,c} \sqrt{\dfrac{3}{4} (a+b)^2}=\dfrac{\sqrt3}{2}\left[(a+b)+(b+c)+(c+a)\right] = \dfrac{\sqrt3}{2}(2)(2\sqrt3)=6

NE! By some coincidence, I also used your method. Except I let a = 2 y a = 2y and b = 3 z b = 3z .

Manuel Kahayon - 4 years, 9 months ago
Norwyn Kah
Aug 24, 2016

We can write the expression above as ( x + y ) 2 + ( y 3 ) 2 + ( 2 y + 3 z 2 ) 2 + ( 3 z 3 2 ) 2 + ( 3 z + x 2 ) 2 + ( x 3 2 ) 2 \sqrt{(x+y)^2+(y\sqrt{3})^2}+\sqrt{(2y+\frac {3z}{2})^2+(\frac {3z\sqrt{3}}{2})^2}+\sqrt{(3z+\frac {x}{2})^2+(\frac {x\sqrt{3}}{2})^2} By minkowski inequality the minimum value will be ( 3 x 2 + 3 y + 9 z 2 ) 2 + ( x 3 2 + y 3 + 3 z 3 2 ) 2 \sqrt{(\frac{3x}{2}+3y+\frac{9z}{2})^2+(\frac{x\sqrt3}{2}+y\sqrt{3}+\frac {3z\sqrt{3}}{2})^2} = ( 3 2 ) 2 ( x + 2 y + 3 z ) 2 + ( 3 2 ) 2 ( x + 2 y + 3 z ) 2 \sqrt{(\frac{3}{2})^2(x+2y+3z)^2+(\frac{\sqrt3}{2})^2(x+2y+3z)^2} = 27 + 9 \sqrt{27+9} = 6 6

P C
Sep 3, 2016

Rewrite the expression A = ( x + y ) 2 + 3 y 2 + ( y + 3 z ) 2 + 3 y 2 + ( x + 3 2 z ) 2 + 27 4 z 2 A=\sqrt{(x+y)^2+3y^2}+\sqrt{(y+3z)^2+3y^2}+\sqrt{\big(x+\frac{3}{2}z\big)^2+\frac{27}{4}z^2} .By Cauchy-Schwarz we have 4 3 [ ( x + y ) 2 + 3 y 2 ] x + 2 y \sqrt{\frac{4}{3}\big[(x+y)^2+3y^2\big]}\geq |x+2y| 4 3 [ ( y + 3 z ) 2 + 3 y 2 ] 2 y + 3 z \sqrt{\frac{4}{3}\big[(y+3z)^2+3y^2\big]}\geq |2y+3z| 4 3 [ ( x + 3 2 z ) 2 + 27 4 z 2 ] x + 3 z \sqrt{\frac{4}{3}\bigg[\big(x+\frac{3}{2}z\big)^2+\frac{27}{4}z^2\bigg]}\geq |x+3z| So 2 3 3 A x + 2 y + 2 y + 3 z + x + 3 z 2 ( x + 2 y + 3 z ) = 4 3 \frac{2\sqrt{3}}{3}A\geq |x+2y|+|2y+3z|+|x+3z|\geq |2(x+2y+3z)|=4\sqrt{3} . Therefore A 6 A\geq 6 , the equality holds when ( x , y , z ) = ( 2 3 3 ; 3 3 ; 2 3 9 ) (x,y,z)=\bigg(\frac{2\sqrt{3}}{3};\frac{\sqrt{3}}{3};\frac{2\sqrt{3}}{9}\bigg)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...