x 2 + 2 x y + 4 y 2 + 4 y 2 + 6 y z + 9 z 2 + 9 z 2 + 3 x z + x 2
If real numbers x , y , z satisfy x + 2 y + 3 z = 2 3 , find the minimum value of the above expression.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
NE! By some coincidence, I also used your method. Except I let a = 2 y and b = 3 z .
We can write the expression above as ( x + y ) 2 + ( y 3 ) 2 + ( 2 y + 2 3 z ) 2 + ( 2 3 z 3 ) 2 + ( 3 z + 2 x ) 2 + ( 2 x 3 ) 2 By minkowski inequality the minimum value will be ( 2 3 x + 3 y + 2 9 z ) 2 + ( 2 x 3 + y 3 + 2 3 z 3 ) 2 = ( 2 3 ) 2 ( x + 2 y + 3 z ) 2 + ( 2 3 ) 2 ( x + 2 y + 3 z ) 2 = 2 7 + 9 = 6
Rewrite the expression A = ( x + y ) 2 + 3 y 2 + ( y + 3 z ) 2 + 3 y 2 + ( x + 2 3 z ) 2 + 4 2 7 z 2 .By Cauchy-Schwarz we have 3 4 [ ( x + y ) 2 + 3 y 2 ] ≥ ∣ x + 2 y ∣ 3 4 [ ( y + 3 z ) 2 + 3 y 2 ] ≥ ∣ 2 y + 3 z ∣ 3 4 [ ( x + 2 3 z ) 2 + 4 2 7 z 2 ] ≥ ∣ x + 3 z ∣ So 3 2 3 A ≥ ∣ x + 2 y ∣ + ∣ 2 y + 3 z ∣ + ∣ x + 3 z ∣ ≥ ∣ 2 ( x + 2 y + 3 z ) ∣ = 4 3 . Therefore A ≥ 6 , the equality holds when ( x , y , z ) = ( 3 2 3 ; 3 3 ; 9 2 3 )
Problem Loading...
Note Loading...
Set Loading...
Let a = x , b = 2 y , and c = 3 z . We have a + b + c = 2 3 . The expression then becomes a , b , c ∑ a 2 + a b + b 2 . Note that a 2 + a b + b 2 = 2 1 ( a 2 + b 2 + ( a + b ) 2 ) . By Cauchy-Schwarz Inequality, ( a 2 + b 2 ) ≥ 2 ( a + b ) 2 . Then a , b , c ∑ a 2 + a b + b 2 = a , b , c ∑ 2 1 ( a 2 + b 2 + ( a + b ) 2 ) ≥ a , b , c ∑ 2 1 ( 2 ( a + b ) 2 + ( a + b ) 2 ) = a , b , c ∑ 4 3 ( a + b ) 2 = 2 3 [ ( a + b ) + ( b + c ) + ( c + a ) ] = 2 3 ( 2 ) ( 2 3 ) = 6