The map that leads to answer!

Algebra Level 4

f ( x ) = ( x + 1 ) ( x 2 x ) x x + x + x \large f(x) = \dfrac{(\sqrt{x} + 1)(x^{2} - \sqrt{x})}{x \sqrt{x} + x + \sqrt{x}}

Define f ( x ) f(x) as above and further define g ( x ) = f ( f ( x ) ) g(x) = f(f(x)) .

Find the value of [ i = 2 1000 g ( i ) ] 1 \large\displaystyle [\sum_{i=2}^{1000} g(i)] - 1 .


The answer is 498500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

f ( x ) = ( x + 1 ) ( x 2 x ) x x + x + x = x ( x + 1 ) ( x x 1 ) x ( x + x + 1 ) = ( x 1 ) ( x + 1 ) ( x x 1 ) ( x 1 ) ( x + x + 1 ) = ( x 1 ) ( x x 1 ) x x 1 = x 1 f(x)=\frac { \left( \sqrt { x } +1 \right) \left( { x }^{ 2 }-\sqrt { x } \right) }{ x\sqrt { x } +x+\sqrt { x } } =\frac { \sqrt { x } \left( \sqrt { x } +1 \right) \left( { x }\sqrt { x } -1 \right) }{ \sqrt { x } \left( x+\sqrt { x } +1 \right) } =\frac { \left( \sqrt { x } -1 \right) \left( \sqrt { x } +1 \right) \left( { x }\sqrt { x } -1 \right) }{ \left( \sqrt { x } -1 \right) \left( x+\sqrt { x } +1 \right) } =\frac { \left( x-1 \right) \left( { x }\sqrt { x } -1 \right) }{ x\sqrt { x } -1 } =x-1\\

g ( x ) = f ( f ( x ) ) = f ( x 1 ) = x 2 \\ g(x)=f(f\left( x \right) )=f(x-1)=x-2\\

i = 1 1000 i 2 = i = 1 1000 i i = 1 1000 2 = 500500 2000 = 498500 \\ \sum _{ i=1 }^{ 1000 }{ i-2=\sum _{ i=1 }^{ 1000 }{ i } -\sum _{ i=1 }^{ 1000 }{ 2 } } =500500-2000=498500

Mj Bltz
Jun 4, 2015

We can simplify f ( x ) f(x) as follows:

f ( x ) = ( x + 1 ) ( x 2 x ) x x + x + x f(x) = \frac{(\sqrt{x}+1)(x^{2}-\sqrt{x})}{x\sqrt{x}+x+\sqrt{x}} = x ( x + 1 ) ( x x 1 ) x ( x + x + 1 ) = \frac{\sqrt{x}(\sqrt{x}+1)(x\sqrt{x}-1)}{\sqrt{x}(x+\sqrt{x}+1)}

After cancelling the x \sqrt{x} terms, and multiplying the grouped terms in the numerator, we get

f ( x ) = x 2 1 + x x x x + x + 1 = ( x + 1 ) ( x 1 ) + ( x 1 ) x x + x + 1 f(x) = \frac{x^2 -1+x\sqrt{x}- \sqrt{x}}{x+\sqrt{x}+1} = \frac{(x+1)(x-1)+(x-1)\sqrt{x}}{x+\sqrt{x}+1} = ( x 1 ) [ ( x + 1 ) + x ] x + x + 1 = x 1 = \frac{(x-1)[(x+1)+\sqrt{x}]}{x+\sqrt{x}+1} = x-1

And thus, g ( x ) = f ( f ( x ) ) = f ( x 1 ) = ( x 1 ) 1 = x 2 g(x)= f(f(x))= f(x-1)= (x-1)-1 = x-2 i = 1 1000 g ( i ) = i = 1 1000 ( i 2 ) = ( 1 + 998 ) ( 1000 ) 2 = 498500 \sum_{i=1}^{1000}g(i)= \sum_{i=1}^{1000}(i-2) = (-1+998)\frac{(1000)}{2} = 498 500

There was no need no expand you could have straight away used the formula for a 3 b 3 {a}^{3}-{b}^{3} .

Abhishek Sharma - 6 years ago

Log in to reply

@Harsh Shrivastava I think that the summation should not start with 1 cause f(f(1)=0/0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...