The Matrix Has You

Algebra Level 2

True or False:

If M = ( a b c d e f g h i ) M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} and a a , b b , c c , d d , e e , f f , g g , h h , and i i are in an arithmetic progression or in a geometric progression, then det ( M ) = 0 \det(M) = 0 .

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Feb 19, 2020

If a , b , c , d , e , f , g , h , i a,b,c,d,e,f,g,h,i are in geometric progression with common ratio r r , then the second row is r 3 r^3 times the first row. Thus taking r 3 r^3 times the first row from the second row we see that d e t M = a b c d e f g h i = a b c 0 0 0 g h i = 0 \mathrm{det}\,M \; = \; \left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right| \; = \; \left| \begin{array}{ccc} a & b & c \\ 0 & 0 & 0 \\ g & h & i \end{array}\right| \; = \; 0

If a , b , c , d , e , f , g , h , i a,b,c,d,e,f,g,h,i are in arithmetic progression with common difference u u , first taking the second row from the third and then the first row from the second, and then the second row from the third row again, we obtain d e t M = a b c d e f g h i = a b c d e f 3 u 3 u 3 u = a b c 3 u 3 u 3 u 3 u 3 u 3 u = a b c 3 u 3 u 3 u 0 0 0 = 0 \mathrm{det}\,M = \left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right| \; = \; \left|\begin{array}{ccc}a & b & c \\ d & e & f \\ 3u & 3u & 3u \end{array}\right| \; = \; \left|\begin{array}{ccc} a & b & c \\ 3u & 3u &3u \\ 3u & 3u & 3u \end{array}\right| \; = \; \left|\begin{array}{ccc} a & b & c \\ 3u & 3u & 3u \\ 0 & 0 & 0 \end{array}\right| \; = \; 0

David Vreken
Feb 22, 2020

For all arithmetic sequences, let M = ( a 4 d a 3 d a 2 d a d a a + d a + 2 d a + 3 d a + 4 d ) M = \begin{pmatrix} a - 4d & a - 3d & a - 2d \\ a - d & a & a + d \\ a + 2d & a + 3d & a + 4d \end{pmatrix} . Then

det ( M ) \det(M)

= ( a 4 d ) a ( a + 4 d ) + ( a 3 d ) ( a + d ) ( a + 2 d ) + ( a 2 d ) ( a d ) ( a + 3 d ) ( a 2 d ) a ( a + 2 d ) ( a 4 d ) ( a + d ) ( a + 3 d ) ( a 3 d ) ( a d ) ( a + 4 d ) \small{= (a - 4d)a(a + 4d) + (a -3d)(a + d)(a + 2d) + (a - 2d)(a - d)(a + 3d) - (a - 2d)a(a + 2d) - (a - 4d)(a + d)(a + 3d) - (a - 3d)(a - d)(a + 4d)}

= ( a 3 16 a d 2 ) + ( a 3 7 a d 2 6 d 3 ) + ( a 3 7 a d 2 + 6 d 3 ) ( a 3 4 a d 2 ) ( a 3 13 a d 2 12 d 3 ) ( a 3 13 a d 2 + 12 d 3 ) = (a^3 - 16ad^2) + (a^3 - 7 a d^2 - 6 d^3) + (a^3 - 7 a d^2 + 6 d^3) - (a^3 - 4 a d^2) - (a^3 - 13 a d^2 - 12 d^3) - (a^3 - 13 a d^2 + 12 d^3)

= 0 = 0

For all geometric sequences, let M = ( a r 4 a r 3 a r 2 a r 1 a a r a r 2 a r 3 a r 4 ) M = \begin{pmatrix} ar^{-4} & ar^{-3} & ar^{-2} \\ ar^{-1} & a & ar \\ ar^2 & ar^3 & ar^4 \end{pmatrix} . Then

det ( M ) \det(M)

= a r 4 a a r 4 + a r 3 a r a r 2 + a r 2 a r 1 a r 3 a r 2 a a r 2 a r 4 a r a r 3 a r 3 a r 1 a r 4 = ar^{-4} \cdot a \cdot ar^4 + ar^{-3} \cdot ar \cdot ar^2 + ar^{-2} \cdot ar^{-1} \cdot ar^3 - ar^{-2} \cdot a \cdot ar^2 - ar^{-4} \cdot ar \cdot ar^3 - ar^{-3} \cdot ar^{-1} \cdot ar^4

= a 3 + a 3 + a 3 a 3 a 3 a 3 = a^3 + a^3 + a^3 - a^3 - a^3 - a^3

= 0 = 0

Both arithmetic and geometric sequences result in det ( M ) = 0 \det(M) = 0 , so the statement is true .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...