The Mauve Theorem

Algebra Level 4

If cos x = 16 π 2 4 \cos x = \Large{\frac{\sqrt{16 - \pi^2}}{4}} and sin x = a \sin x = a , evaluate ( cos 8 + i sin 8 ) a \large{(\cos 8 + i\sin 8)^a}

i i i -i 2 2 1 1 1 -1 i 2 i\sqrt{2} 2 i 2i

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: De Moivre's Theorem

cos x = 16 π 4 = 1 ( π 4 ) 2 Since cos x = 1 sin 2 x sin x = π 4 = a \begin{aligned} \cos x & = \frac {\sqrt{16-\pi}}4 \\ & = \sqrt{1-\left(\frac \pi 4 \right)^2} & \small \color{#3D99F6}{\text{Since }\cos x = \sqrt{1-\sin^2 x}} \\ \implies \sin x & = \frac \pi 4 = a \end{aligned}

Therefore, we have

( cos 8 + i sin 8 ) a = e 8 i a By De Moivre’s theorem = e 8 i π 4 = e 2 π i = cos ( 2 π ) + i sin ( 2 π ) = 1 \begin{aligned} (\cos 8 + i \sin 8)^a & = e^{8ia} & \small \color{#3D99F6}{\text{By De Moivre's theorem}} \\ & = e^{8i \cdot \frac \pi 4} \\ & = e^{2\pi i} \\ & = \cos (2\pi) + i\sin (2\pi) \\ & = \boxed{1} \end{aligned} .

Akeel Howell
Aug 2, 2016

cos x = 16 π 2 4 \cos x = \large\frac{\sqrt{16 - \pi^2}}{4} cos 2 x = ( 16 π 2 16 ) \therefore \cos^2 x = \Big(\frac{16 - \pi^2}{16}\Big) So sin 2 x = 16 ( 16 π 2 ) 16 \sin^2 x = \frac{16 - (16 - \pi^2)}{16} sin 2 x = π 2 16 \sin^2 x = \frac{\pi^2}{16} sin x = π 4 \therefore \sin x = \frac{\pi}{4} So a = π 4 a = \frac{\pi}{4} Hence, ( cos 8 + i sin 8 ) a = ( cos 8 + i sin 8 ) π 4 \Big(\cos 8 + i\sin 8 \Big)^a = \Big(\cos 8 + i\sin 8 \Big)^\frac{\pi}{4} = cos 8 π 4 + i sin 8 π 4 = \cos \frac{8\pi}{4} + i\sin{\frac{8\pi}{4}} by De Moivre's Theorem. We can clearly see that this is cos 2 π + i sin 2 π = 1 + 0. = 1. \cos 2\pi + i\sin 2\pi = 1 + 0. = \boxed{1.}

Have to consider that sin x \sin x is able to be π 4 \frac{-\pi}{4} too

Guillermo Templado - 4 years, 10 months ago

Log in to reply

Correct, I only solved for one case. Thank you for highlighting it though.

Akeel Howell - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...