The maximum area of OAPF

Geometry Level 3

On a coordinate plane, O O is the origin, ellipse C C has equation x 2 9 + y 2 10 = 1 \dfrac{x^2}{9}+\dfrac{y^2}{10}=1 , point F F is at ( 0 , 1 ) (0,1) and A A is at ( 3 , 0 ) (3,0) . P P is a point on the ellipse and in the first quadrant .

Find the maximum area of quadrilateral O A P F OAPF .

Let A A denote the maximum area. Submit 10000 A \lfloor 10000A \rfloor .


The answer is 49749.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

O = ( 0 , 0 ) , F = ( 0 , 1 ) , A = ( 3 , 0 ) Let the parametric point on the ellipse be P ( 3 c o s ( θ ) , 10 s i n ( θ ) ) Area of O A F is constant and can be calculated as : O = (0,0)\;,\quad F = (0,1)\;,\quad A = (3,0)\newline \text{Let the parametric point on the ellipse be } P(3\,cos(\theta), \sqrt{10}\,sin(\theta))\newline \text{Area of }\triangle OAF \text{ is constant and can be calculated as :}

a r e a ( O A F ) = 1 2 O A O F = 1 2 3 1 = 3 2 Eq. 1 \newline \large area(\triangle OAF) = \frac{1}{2}\cdot OA\cdot OF = \frac{1}{2}\cdot3\cdot1 = \frac{3}{2} \hspace{20pt}\dots\;\textbf{Eq. 1}

Now the area of quadrilateral O A P F will be maximum when the area of P A F will be maximum. Since the length F A is constant, we have to find the point P such that P is at maximum distance from F A . Equation of line F A : y 1 x 0 = 0 1 3 0 \newline \text{Now the area of quadrilateral }OAPF\text{ will be maximum when the area of }\triangle PAF\text{ will be maximum. Since the length }FA \text{ is constant, we have to}\newline\text{find the point }P\text{ such that }P\text{ is at maximum distance from }FA.\newline \text{Equation of line }FA \text{:}\newline\hspace{100pt} \large\frac{y-1}{x-0} = \frac{0-1}{3-0} x + 3 y 3 = 0 Distance of point P from the line F A can be calculated as: \newline\Rightarrow x + 3y - 3 = 0\newline \text{Distance of point }P\text{ from the line }FA\text{ can be calculated as: }

P D = 3 c o s ( θ ) + 3 10 s i n ( θ ) 3 1 2 + 3 2 = 3 10 c o s ( θ ) + 10 s i n ( θ ) 1 PD = \Large\frac{|3cos(\theta) + 3\sqrt{10}sin(\theta) - 3|}{\sqrt{1^2+3^2}} = \large\frac{3}{\sqrt{10}}\cdot|cos(\theta) + \sqrt{10}sin(\theta) - 1|

P D = 3 10 11 ( 1 11 c o s ( θ ) + 10 11 s i n ( θ ) ) 1 \newline\large\Rightarrow PD = \frac{3}{\sqrt{10}}\cdot\mid\sqrt{11}\Big(\frac{1}{\sqrt{11}}cos(\theta) + \frac{\sqrt{10}}{\sqrt{11}}sin(\theta)\Big) - 1\mid

P D = 3 10 11 s i n ( θ + α ) 1 where c o s ( α ) = 10 11 α = 17.55 ° \large\Rightarrow PD = \frac{3}{\sqrt{10}}\cdot\mid\sqrt{11}sin(\theta + \alpha) - 1\mid\quad\quad \text{where }cos(\alpha) = \frac{\sqrt{10}}{\sqrt{11}}\Rightarrow \alpha = 17.55\degree

The value ( θ + α ) can vary from α to 90 ° + α . Hence, the value of s i n ( θ + α ) have maximum value at θ + α = 90 ° . So, \text{The value }(\theta + \alpha)\text{ can vary from }\alpha \text{ to }90\degree + \alpha\text{. Hence, the value of }sin(\theta + \alpha) \text{ have maximum value at }\theta + \alpha = 90\degree\text{. So, }

P D m a x = 3 10 11 1 = 3 10 ( 11 1 ) PD_{max} = \large\frac{3}{\sqrt{10}}\cdot\mid\sqrt{11} - 1\mid = \frac{3}{\sqrt{10}}\cdot(\sqrt{11} - 1)

a r e a ( P A F ) = 1 2 A F P D m a x = 1 2 10 3 10 ( 11 1 ) = 3 2 ( 11 1 ) Eq. 2 \large area(\triangle PAF) = \frac{1}{2}\cdot AF\cdot PD_{max} = \frac{1}{2}\cdot \sqrt{10}\cdot \frac{3}{\sqrt{10}}\cdot(\sqrt{11} - 1) = \frac{3}{2}(\sqrt{11} - 1)\hspace{20pt}\dots\;\textbf{Eq. 2}

Adding Eq. 1 and Eq. 2 we get \text{Adding }\textbf{Eq. 1}\text{ and }\textbf{Eq. 2} \text{ we get }

a r e a ( O A P F ) = A = 3 11 2 10000 A = 15000 11 = 49749.37 10000 A = 49749 \large area(OAPF) = A = \frac{3\sqrt{11}}{2}\Rightarrow 10000A = 15000\sqrt{11} = 49749.37 \Rightarrow \lfloor10000A\rfloor = \boxed{49749}

David Vreken
Oct 10, 2019

Let the x x -coordinate of P P be p p . Since x 2 9 + y 2 10 = 1 \frac{x^2}{9} + \frac{y^2}{10} = 1 , the y y -coordinate of P P in the first quadrant is 10 10 9 p 2 \sqrt{10 - \frac{10}{9}p^2} , so that P is ( p p , 10 10 9 p 2 \sqrt{10 - \frac{10}{9}p^2} ). Since F A = ( 3 , 1 ) \overrightarrow{FA} = (3, -1) and F P = ( p , 10 10 9 p 2 1 ) \overrightarrow{FP} = (p, \sqrt{10 - \frac{10}{9}p^2} - 1) , F A P \triangle FAP has an area of 1 2 [ 3 1 p 10 10 9 p 2 1 ] = 3 2 10 10 9 p 2 3 2 + 1 2 p \frac{1}{2} \begin{bmatrix} 3 & -1 \\ p & \sqrt{10 - \frac{10}{9}p^2} - 1 \end{bmatrix} = \frac{3}{2}\sqrt{10 - \frac{10}{9}p^2} - \frac{3}{2} + \frac{1}{2}p .

Since F A O \triangle FAO has an area of 1 2 3 1 = 3 2 \frac{1}{2} \cdot 3 \cdot 1 = \frac{3}{2} , quadrilateral O A P F OAPF has an area of A = 3 2 10 10 9 p 2 3 2 + 1 2 p + 3 2 = 3 2 10 10 9 p 2 + 1 2 p A = \frac{3}{2}\sqrt{10 - \frac{10}{9}p^2} - \frac{3}{2} + \frac{1}{2}p + \frac{3}{2} = \frac{3}{2}\sqrt{10 - \frac{10}{9}p^2} + \frac{1}{2}p .

The derivative A = 5 p 3 10 10 9 p 2 + 1 2 A' = -\frac{5p}{3\sqrt{10 - \frac{10}{9}p^2}} + \frac{1}{2} , which is a decreasing function and therefore has a maximum when A = 0 A' = 0 , which is at p = 3 11 11 p = \frac{3\sqrt{11}}{11} , so that A A has a maximum value of A = 3 2 10 10 9 ( 3 11 11 ) 2 + 1 2 ( 3 11 11 ) = 3 11 2 A = \frac{3}{2}\sqrt{10 - \frac{10}{9}(\frac{3\sqrt{11}}{11})^2} + \frac{1}{2}(\frac{3\sqrt{11}}{11}) = \frac{3\sqrt{11}}{2} . Therefore, 10000 A = 49749 \lfloor 10000A \rfloor = \boxed{49749} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...