( x 3 + y 3 ) ( y 3 + z 3 ) ( z 3 + x 3 ) ≤ k ( x + y ) ( y + z ) ( z + x )
Find the minimum value of k such that for all non-negative reals which satisfy x + y + z = 6 , the above inequality is true.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
+1 Your solution is a great read:
Thanks for contributing and helping other members aspire to be like you
Nice solution! Thanks!
Let x + y + z = S and then divide the inequality by ( x + y ) ( y + z ) ( z + x ) to get
A = ( x 2 − x y + y 2 ) ( y 2 − y z + z 2 ) ( z 2 − z x + x 2 ) ≤ k
So, now we need to maximise A. WLOG , x ≥ y ≥ z
A = ( x 4 − x 3 ( y + z ) + x 2 ( y 2 + z 2 + z y ) − x y z ( y + z ) + ( y z ) 2 ) ( ( z + y ) 2 − 3 y z )
Now replace y + z by S − x
A = ( x 4 − x 3 ( S − x ) + x 2 ( S − x ) 2 + ∗ ∗ y z ( y z − S x ) ∗ ∗ ) ( ( S − x ) 2 − 3 y z )
Now, y z ( y z − S x ) ≤ 0 and the equality holds when z = 0 .
Similarly, ( S − x ) 2 − 3 y z ≥ ( S − x ) 2 the equality also holding when z = 0
So, for a particular x , A is maximum when z = 0 .
Let t = x ( S − x ) and B be the maximum value of A for every x .
B = t 2 [ x 2 − x ( S − x ) + ( S − x ) 2 ] = t 2 [ S 2 − 3 t ]
This is a cubic, and its local maximum occurs at t = 9 2 S 2 .
Putting back into the equation, we get k ≥ 7 2 9 1 2 S 6 = 7 6 8
Also, the equality occurs at x = 3 2 S = 4 , y = 3 S = 2 , z = 0
Problem Loading...
Note Loading...
Set Loading...
As this inequality is true for all ( x , y , z ) , it is possible to divide by ( x + y ) ( y + z ) ( z + x ) . This question becomes equivalent to finding the maxima of f ( x , y , z ) = c y c ∏ ( x 2 − x y + y 2 )
WLOG assume that z ≥ x ≥ y . Note the following:
( y + z ) 2 ≥ y 2 − y z + z 2 ( ∵ y z ≥ 0 ) ( 1 ) x 2 ≥ x 2 − x y + y 2 ( ∵ x ≥ y ) ( 2 )
Also , x 2 − x ( y + z ) + ( y + z ) 2 = x 2 − z x + z 2 + y ( y + 2 z − x ) ≥ x 2 − z x + z 2 ( ∵ z ≥ x ) (3)
If we set t = 6 x − x 2 then (1) × (2) × (3) give us
f ( x , y , z ) ≤ f ( x , y + z , 0 ) = f ( x , 6 − x , 0 ) = 3 ( 6 − x ) 2 x 2 ( x 2 − 6 x + 1 2 ) = 3 t 2 ( 1 2 − t ) .
And since t ∈ [ 0 , 9 ] we find that the maximum is 7 6 8 with an equality when t = 8 .
This is when x = 2 , y = 0 , z = 4 .