64 Is Not The Answer!

Algebra Level 5

( x 3 + y 3 ) ( y 3 + z 3 ) ( z 3 + x 3 ) k ( x + y ) ( y + z ) ( z + x ) \big(x^3+y^3\big)\big(y^3+z^3\big)\big(z^3+x^3\big) \le k(x+y)(y+z)(z+x)

Find the minimum value of k k such that for all non-negative reals which satisfy x + y + z = 6 x + y + z = 6 , the above inequality is true.


The answer is 768.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chaebum Sheen
Oct 15, 2016

As this inequality is true for all ( x , y , z ) (x,y,z) , it is possible to divide by ( x + y ) ( y + z ) ( z + x ) (x+y)(y+z)(z+x) . This question becomes equivalent to finding the maxima of f ( x , y , z ) = c y c ( x 2 x y + y 2 ) f(x,y,z)=\prod_{cyc} (x^2-xy+y^2)

WLOG \text{WLOG} assume that z x y z \ge x \ge y . Note the following:

( y + z ) 2 y 2 y z + z 2 ( y z 0 ) (1) (y+z)^2 \ge y^2-yz+z^2 \text{ } (\because yz \ge 0) \tag{1} x 2 x 2 x y + y 2 ( x y ) (2) x^2 \ge x^2-xy+y^2 \text{ } (\because x \ge y) \tag{2}

Also, x 2 x ( y + z ) + ( y + z ) 2 = x 2 z x + z 2 + y ( y + 2 z x ) x 2 z x + z 2 ( z x ) (3) \text{Also} \text{, } x^2-x(y+z)+(y+z)^2 =x^2-zx+z^2+y(y+2z-x) \ge x^2-zx+z^2 (\because z \ge x) \text{ } \text{(3)}

If we set t = 6 x x 2 t=6x-x^2 then (1) × (2) × (3) \text{(1)}\times \text{(2)} \times \text{(3)} give us

f ( x , y , z ) f ( x , y + z , 0 ) = f ( x , 6 x , 0 ) = 3 ( 6 x ) 2 x 2 ( x 2 6 x + 12 ) = 3 t 2 ( 12 t ) f(x,y,z) \le f(x,y+z,0)=f(x,6-x,0)=3(6-x)^2x^2(x^2-6x+12)=3t^2(12-t) .

And since t [ 0 , 9 ] t \in [0,9] we find that the maximum is 768 768 with an equality when t = 8 t=8 .

This is when x = 2 , y = 0 , z = 4 x=2, y=0, z=4 .

+1 Your solution is a great read:

  1. Be careful with dividing out by ( x + y ) ( y + z ) ( z + x ) (x+y)(y+z)(z+x) , especially when it equals 0.
  2. Nice approach using smoothing an inequality to set a term to 0.

Thanks for contributing and helping other members aspire to be like you

Calvin Lin Staff - 4 years, 8 months ago

Log in to reply

Thank you for your kind complements.

Chaebum Sheen - 4 years, 8 months ago

Nice solution! Thanks!

Steven Jim - 4 years, 1 month ago
Rohit Kumar
Oct 22, 2016

Let x + y + z = S x+y+z = S and then divide the inequality by ( x + y ) ( y + z ) ( z + x ) (x+y)(y+z)(z+x) to get

A = ( x 2 x y + y 2 ) ( y 2 y z + z 2 ) ( z 2 z x + x 2 ) k A = (x^2 -xy + y^2)(y^2 -yz + z^2)(z^2 -zx + x^2) \leq k

So, now we need to maximise A. WLOG , x y z x \geq y \geq z

A = ( x 4 x 3 ( y + z ) + x 2 ( y 2 + z 2 + z y ) x y z ( y + z ) + ( y z ) 2 ) ( ( z + y ) 2 3 y z ) A = (x^4 - x^3(y+z) + x^2(y^2 + z^2 + zy) -xyz(y+z) + (yz)^2)((z+y)^2 - 3yz)

Now replace y + z y+z by S x S-x

A = ( x 4 x 3 ( S x ) + x 2 ( S x ) 2 + y z ( y z S x ) ) ( ( S x ) 2 3 y z ) A = (x^4 - {x}^{3}(S-x) + {x}^{2}{(S-x)}^{2} + **{yz(yz -Sx)}**)((S-x)^2 - 3yz)

Now, y z ( y z S x ) 0 yz(yz-Sx) \leq 0 and the equality holds when z = 0 z = 0 .

Similarly, ( S x ) 2 3 y z ( S x ) 2 (S-x)^2 - 3yz \geq (S - x)^2 the equality also holding when z = 0 z = 0

So, for a particular x x , A A is maximum when z = 0 z=0 .

Let t = x ( S x ) t = x(S-x) and B B be the maximum value of A A for every x x .

B = t 2 [ x 2 x ( S x ) + ( S x ) 2 ] = t 2 [ S 2 3 t ] B = {t}^{2}[x^2 - x(S-x) + (S-x)^2] = {t}^{2}[S^2 - 3t]

This is a cubic, and its local maximum occurs at t = 2 S 2 9 t = \large\frac{2S^2}{9} .

Putting back into the equation, we get k 12 S 6 729 = 768 k \geq \large\frac{12S^6}{729} = \boxed{768}

Also, the equality occurs at x = 2 S 3 = 4 , y = S 3 = 2 , z = 0 x = \large\frac{2S}{3} = 4 , y = \large\frac{S}{3} = 2 , z = 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...