This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Phew!! Did it finally!!:):)
Okay, so for this expression to attain a maximum value, the expression in the denominator must have the minimum value. Now, for an expression to attain the minimum value, it's derivative must be equal to 0. Differentiating with respect to θ ,
d θ d s i n 2 θ + 3 sin θ cos θ + 5 c o s 2 θ = 0 ⇒ d θ d s i n 2 θ + 3 d θ d sin θ cos θ + 5 d θ d c o s 2 θ = 0 ⇒ 2 sin θ d θ d sin θ + 3 { sin θ d θ d cos θ + cos θ d θ d sin θ } + 1 0 cos θ d θ d cos θ = 0 ⇒ 2 sin θ cos θ + 3 { c o s 2 θ − s i n 2 θ } − 1 0 sin θ cos θ = 0 ⇒ 3 { c o s 2 θ − s i n 2 θ } = 8 sin θ cos θ < − − − − − − 1
A l s o , c o s 2 θ + s i n 2 θ = 1 s i n 2 θ = 1 − c o s 2 θ < − − − − − 2
Using 2 and 1,
3 { c o s 2 θ − 1 + c o s 2 θ } = 8 sin θ cos θ 3 { 2 c o s 2 θ − 1 } = 4 { 2 sin θ cos θ } 3 cos 2 θ = 4 sin 2 θ tan 2 θ = 4 3 1 − tan 2 θ 2 tan θ = 4 3 8 tan θ = 3 − 3 tan 2 θ 3 tan 2 θ + 8 tan θ − 3 = 0 S o l v i n g t h i s q u a d r a t i c e q . , tan θ = − 3 , 3 1
Now, if tan θ = 3 1 , then θ lies in First quadrant. Therefore both sin θ & cos θ are positive and as a result the value of the expression increases. But, if tan θ = − 3 , then θ lies in Second quadrant and here, cos θ is negative whereas sin θ is positive. As a result the value of this expression decreases and the value of s i n 2 θ + 3 sin θ cos θ + 5 c o s 2 θ 1 increases.
So, that is for sure that we need to take tan θ = − 3 as our value. Making a triangle with these values, sin θ = 1 0 3 and cos θ = 1 0 − 1 . Putting these values into s i n 2 θ + 3 sin θ cos θ + 5 c o s 2 θ 1 , the value comes out to be 2.
Cheers!!!:):)