The maximum value.

Geometry Level pending

The maximum value of the expression 1 s i n 2 θ + 3 s i n θ c o s θ + 5 c o s 2 θ \cfrac { 1 }{ { sin }_{ }^{ 2 }\theta +3sin\theta cos\theta +5{ cos }^{ 2 }\theta } is:


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Phew!! Did it finally!!:):)

Okay, so for this expression to attain a maximum value, the expression in the denominator must have the minimum value. Now, for an expression to attain the minimum value, it's derivative must be equal to 0. Differentiating with respect to θ \theta ,

d d θ s i n 2 θ + 3 sin θ cos θ + 5 c o s 2 θ = 0 d d θ s i n 2 θ + 3 d d θ sin θ cos θ + 5 d d θ c o s 2 θ = 0 2 sin θ d d θ sin θ + 3 { sin θ d d θ cos θ + cos θ d d θ sin θ } + 10 cos θ d d θ cos θ = 0 2 sin θ cos θ + 3 { c o s 2 θ s i n 2 θ } 10 sin θ cos θ = 0 3 { c o s 2 θ s i n 2 θ } = 8 sin θ cos θ < 1 \frac { d }{ d\theta } sin^{ 2 }{ \theta }+3\sin { \theta } \cos { \theta } +5cos^{ 2 }{ \theta }=0\\ \Rightarrow \frac { d }{ d\theta } sin^{ 2 }{ \theta }+3\frac { d }{ d\theta } \sin { \theta } \cos { \theta } +5\frac { d }{ d\theta } cos^{ 2 }{ \theta }=0\\ \Rightarrow 2\sin { \theta } \frac { d }{ d\theta } \sin { \theta } +3\{ \sin { \theta } \frac { d }{ d\theta } \cos { \theta } +\cos { \theta } \frac { d }{ d\theta } \sin { \theta } \} +10\cos { \theta } \frac { d }{ d\theta } \cos { \theta } =0\\ \Rightarrow 2\sin { \theta } \cos { \theta } +3\{ cos^{ 2 }{ \theta }-sin^{ 2 }{ \theta }\} -10\sin { \theta } \cos { \theta } =0\\ \Rightarrow 3\{ cos^{ 2 }{ \theta }-sin^{ 2 }{ \theta }\} =8\sin { \theta } \cos { \theta } \quad <------1\\

A l s o , c o s 2 θ + s i n 2 θ = 1 s i n 2 θ = 1 c o s 2 θ < 2 Also,\quad cos^{ 2 }{ \theta }+sin^{ 2 }{ \theta }=1\\ sin^{ 2 }{ \theta }=1-cos^{ 2 }{ \theta }\quad <-----2

Using 2 and 1,

3 { c o s 2 θ 1 + c o s 2 θ } = 8 sin θ cos θ 3 { 2 c o s 2 θ 1 } = 4 { 2 sin θ cos θ } 3 cos 2 θ = 4 sin 2 θ tan 2 θ = 3 4 2 tan θ 1 tan 2 θ = 3 4 8 tan θ = 3 3 tan 2 θ 3 tan 2 θ + 8 tan θ 3 = 0 S o l v i n g t h i s q u a d r a t i c e q . , tan θ = 3 , 1 3 3\{ cos^{ 2 }{ \theta }-1+cos^{ 2 }{ \theta }\} =8\sin { \theta } \cos { \theta } \\ 3\{ 2cos^{ 2 }{ \theta }-1\} =4\{ 2\sin { \theta } \cos { \theta } \} \\ 3\cos { 2\theta } =4\sin { 2\theta } \\ \tan { 2\theta } =\frac { 3 }{ 4 } \\ \frac { 2\tan { \theta } }{ 1-\tan ^{ 2 }{ \theta } } =\frac { 3 }{ 4 } \\ 8\tan { \theta } =3-3\tan ^{ 2 }{ \theta } \\ 3\tan ^{ 2 }{ \theta } +8\tan { \theta } -3=0\\ Solving\quad this\quad quadratic\quad eq.,\\ \tan { \theta } =-3,\frac { 1 }{ 3 } \\

Now, if tan θ = 1 3 \tan { \theta } =\frac { 1 }{ 3 } , then θ \theta lies in First quadrant. Therefore both sin θ \sin { \theta } & cos θ \cos { \theta } are positive and as a result the value of the expression increases. But, if tan θ = 3 \tan { \theta } =-3 , then θ \theta lies in Second quadrant and here, cos θ \cos { \theta } is negative whereas sin θ \sin { \theta } is positive. As a result the value of this expression decreases and the value of 1 s i n 2 θ + 3 sin θ cos θ + 5 c o s 2 θ \frac { 1 }{ sin ^{ 2 }{ \theta } +3\sin { \theta } \cos { \theta } +5cos ^{ 2 }{ \theta } } increases.

So, that is for sure that we need to take tan θ = 3 \tan { \theta } =-3 as our value. Making a triangle with these values, sin θ = 3 10 \sin { \theta } =\frac { 3 }{ \sqrt { 10 } } and cos θ = 1 10 \cos { \theta } =\frac { -1 }{ \sqrt { 10 } } . Putting these values into 1 s i n 2 θ + 3 sin θ cos θ + 5 c o s 2 θ \frac { 1 }{ sin ^{ 2 }{ \theta } +3\sin { \theta } \cos { \theta } +5cos ^{ 2 }{ \theta } } , the value comes out to be 2.

Cheers!!!:):)

Nice one!!

A Former Brilliant Member - 6 years, 8 months ago

Log in to reply

Thank you @chinmay sangawadekar

A Former Brilliant Member - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...