the minmum value of #9

Algebra Level 3

Let x x and y y be positive numbers whose sum is 1, find the minimum value of ( x + 1 x ) 2 + ( y + 1 y ) 2 1 2 . \left(x + \frac1x\right)^2 + \left(y + \frac1y\right)^2 - \frac12 .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Mar 3, 2021

Let's take a LaGrange Multipliers approach here. Taking f ( x , y ) = ( x + 1 x ) 2 + ( y + 1 y ) 2 1 2 f(x,y) = (x+\frac{1}{x})^2 + (y+\frac{1}{y})^2 - \frac{1}{2} and g ( x , y ) = x + y = 1 g(x,y)=x+y=1 , we compute f = λ g \nabla f = \lambda \cdot \nabla g . This now yields:

2 ( x + 1 x ) ( 1 1 x 2 ) = λ ; 2(x+\frac{1}{x})(1-\frac{1}{x^2}) = \lambda; (i)

2 ( y + 1 y ) ( 1 1 y 2 ) = λ ; 2(y+\frac{1}{y})(1-\frac{1}{y^2}) = \lambda; (ii)

and equating (i) with (ii) gives:

x 4 1 x 3 = y 4 1 y 3 ; \frac{x^4-1}{x^3} = \frac{y^4-1}{y^3};

or x 4 y 3 x 3 y 4 = y 3 x 3 x^4y^3-x^3y^4 = y^3-x^3 ;

or x 3 y 3 ( x y ) = ( x y ) ( x 2 + x y + y 2 ) x^3y^3(x-y) = -(x-y)(x^2+xy+y^2) ;

or x = y x=y (iii); ( x y ) 3 = ( x 2 + x y + y 2 ) (xy)^3 = -(x^2+xy+y^2) (iv)

Since (iv) is a contradiction for all x , y R + x,y \in \mathbb{R^{+}} we only admit (iii) x = y = 1 2 . \Rightarrow x = y = \frac{1}{2}. Taking the Hessian matrix of f f yields:

F ( x , y ) = [ f x x f x y f y x f y y ] = [ 1 + 3 x 4 0 0 1 + 3 y 4 ] F(x,y) = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} = \begin{bmatrix} 1+\frac{3}{x^4} & 0 \\ 0 & 1 + \frac{3}{y^4} \end{bmatrix}

and evaluated at the critical point x = y = 1 2 x = y = \frac{1}{2} :

F ( 1 / 2 , 1 / 2 ) = [ 49 0 0 49 ] = 49 I 2 x 2 F(1/2,1/2) = \begin{bmatrix} 49 & 0 \\ 0 & 49 \end{bmatrix} = 49 \cdot I_{2x2} (which is positive-definite and ( 1 / 2 , 1 / 2 ) (1/2,1/2) \Rightarrow a global minimum over x , y R + x,y \in \mathbb{R^{+}} ).

Thus the minimum value computes to f ( 1 / 2 , 1 / 2 ) = 2 ( 1 2 + 2 ) 2 1 2 = 12 . f(1/2,1/2) = 2(\frac{1}{2} + 2)^2 - \frac{1}{2} = \boxed{12}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...