the minmum value of# 9

Algebra Level 2

y = ( e x 2 ) ( e x 1 ) \large y=(e^x-2)(e^x-1)

Find the minimum value of y y .


The answer is -0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 24, 2020

y = ( e x 2 ) ( e x 1 ) = e 2 x 3 e x + 2 = e 2 x 3 e x + 9 4 1 4 = ( e x 3 2 ) 2 1 4 Since ( e x 3 2 ) 2 0 , 1 4 = 0.25 \begin{aligned} y & = (e^x-2)(e^x -1) \\ & = e^{2x} - 3e^x + 2 \\ & = e^{2x} - 3e^x + \frac 94 - \frac 14 \\ & = \left(e^x - \frac 32\right)^2 - \frac 14 & \small \blue{\text{Since }\left(e^x - \frac 32\right)^2 \ge 0,} \\ & \ge - \frac 14 = \boxed{-0.25} \end{aligned}

Elijah L
Jun 24, 2020

Substitute z = e x z = e^x . We are then looking to minimize the value of z 2 3 z + 2 z^2 - 3z + 2 .

Expressing it in vertex form: ( z 3 2 ) 2 1 4 \left(z- \displaystyle \frac{3}{2}\right)^2 - \displaystyle \frac{1}{4}

The minimum value is then 1 4 \boxed{\displaystyle -\frac{1}{4}} and occurs when x = ln ( 3 2 ) x = \ln \left(\displaystyle \frac{3}{2}\right) .

Ved Pradhan
Jun 24, 2020

To find the minimum value of a function, we must set it's derivative equal to zero.

y = ( e x 2 ) ( e x 1 ) y=(e^{x}-2)(e^{x}-1) d y d x = 2 e 2 x 3 e x \dfrac{\text{d}y}{\text{d}x}=2e^{2x}-3e^{x} 2 e 2 x 3 e x = 0 2e^{2x}-3e^{x}=0 e x = 1.5 e^{x}=1.5 x = ln ( 1.5 ) x=\text{ln}(1.5)

A quick inspection of the graph, a table of nearby values, or the second derivative will confirm that this is where the minimum is. Now, to solve for the minimum, we can substitute e x = 1.5 e^{x}=1.5 back into our initial equation.

y = ( e x 2 ) ( e x 1 ) y=(e^{x}-2)(e^{x}-1) y = ( 1.5 2 ) ( 1.5 1 ) y=(1.5-2)(1.5-1) y = ( 0.5 ) ( 0.5 ) y=(-0.5)(0.5) y = 0.25 y=-0.25

Thus, the minimum value of the function is 0.25 \boxed{-0.25} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...