An algebra problem by Aly Ahmed

Algebra Level 2

Let a a and b b be positive numbers whose sum is 1.

Find the minimum value of 1 1 a + 1 1 b \dfrac1{1 - \sqrt a} + \dfrac1{1 - \sqrt b} .

1 12 0 4 + 2 2 4 + 2\sqrt2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Since f ( x ) = 1 1 x f(x) = \dfrac 1{1-\sqrt x} is convex in the interval ( 0 , 1 ] (0,1] , by Jensen's inequality we have:

f ( a ) + f ( b ) 2 f ( a + b 2 ) 1 1 a + 1 1 b 2 1 a + b 2 = 2 1 1 2 = 2 2 2 1 = 4 + 2 2 \begin{aligned} \frac {f(a)+f(b)}2 & \ge f \left(\frac {a+b}2\right) \\ \frac 1{1-\sqrt a} + \frac 1{1-\sqrt b} & \ge \frac 2{1-\sqrt{\frac{a+b}2}} = \frac 2{1-\sqrt{\frac 12}} = \frac {2\sqrt 2}{\sqrt 2-1} = \boxed{4+2\sqrt 2} \end{aligned}

a + b = 1 a b 1 2 a+b=1\implies \sqrt {ab}\leq \frac{1}{2} .

1 1 a + 1 1 b = 2 a b 1 a b + a b \dfrac {1}{1-\sqrt a}+\dfrac{1}{1-\sqrt b}=\dfrac{2-\sqrt a-\sqrt b }{1-\sqrt a-\sqrt b+\sqrt {ab}}

2 a b 3 2 a b = 1 + 1 3 2 ( a + b ) \geq \dfrac{2-\sqrt a-\sqrt b}{\frac{3}{2}-\sqrt a-\sqrt b}=1+\dfrac{1}{3-2(\sqrt a+\sqrt b) }

a + b 2 a b 4 = 2 \sqrt a+\sqrt b\geq 2\sqrt[4] {ab}=\sqrt 2 .

So, 1 1 a + 1 1 b 1 + 1 3 2 2 = 1 + 3 + 2 2 = 4 + 2 2 \dfrac{1}{1-\sqrt a}+\dfrac{1}{1-\sqrt b }\geq 1+\dfrac{1}{3-2\sqrt 2}=1+ 3+2\sqrt 2=4+2\sqrt 2 .

@Alak Bhattacharya , we really liked your comment, and have converted it into a solution.

Brilliant Mathematics Staff - 1 year ago

Please note that a + b ≱ 2 \sqrt a + \sqrt b \not \ge \sqrt 2 . Because if a = 1 a=1 , then b = 0 b=0 , a + b = 1 < 2 \sqrt a + \sqrt b = 1 < \sqrt 2 . While a + b 2 a b 4 \sqrt a + \sqrt b \ge 2 \sqrt[4]{ab} , a b 1 2 \sqrt{ab} \le \frac 12 therefore a + b ≱ 2 \sqrt a + \sqrt b \not \ge \sqrt 2 . Also from Cauchy-Schwarz inequality ( a + b ) 2 2 ( a + b ) = 2 a + b 2 (\sqrt a + \sqrt b)^2 \le 2(a+b) = 2 \implies \sqrt a + \sqrt b \le \sqrt 2

Chew-Seong Cheong - 1 year ago

Log in to reply

You're right. I was too hasty when I uploaded this solution.

Brilliant Mathematics Staff - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...