Geometrically Algebraic

Geometry Level 3

Given a function f ( x , y ) f(x,y) for real values x , y x,y , find the minimum value of f ( x , y ) f(x,y) such that

f ( x , y ) = ( x 2 ) 2 + y 2 + x 2 + y 2 + ( x 1 ) 2 + ( y 3 ) 2 f(x,y)=\sqrt{(x-2)^{2}+y^{2}}+\sqrt{x^{2}+y^{2}}+\sqrt{(x-1)^{2}+(y-\sqrt{3})^{2}}

If the answer can be written as a b a \sqrt{b} , such that a , b a, b are positive integers and b b does not contain square factors. Find a + b a+b .

Bonus: Try generalizing this problem.

This is part of the set Fun With Problem-Solving .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ajit Athle
Nov 14, 2019

The given triangle whose vertices are (0,0), (2,0) and (1,√3) of side length 2 is equilateral and thus its Fermat point is its centre which is at 2/√3 from each vertex. The required sum is therefore 3*2/√3 or 2√3.

Donglin Loo
Jan 23, 2018

Let A ( 0 , 0 ) , B ( 1 , 3 ) , C ( 2 , 0 ) , P ( x , y ) A(0,0), B(1,\sqrt{3}), C(2,0), P(x,y)

f ( x , y ) = ( x 2 ) 2 + y 2 + x 2 + y 2 + ( x 1 ) 2 + ( y 3 ) 2 f(x,y)=\sqrt{(x-2)^{2}+y^{2}}+\sqrt{x^{2}+y^{2}}+\sqrt{(x-1)^{2}+(y-\sqrt{3})^{2}}

P A + P B + P C = ( x 2 ) 2 + y 2 + x 2 + y 2 + ( x 1 ) 2 + ( y 3 ) 2 |PA|+|PB|+|PC|=\sqrt{(x-2)^{2}+y^{2}}+\sqrt{x^{2}+y^{2}}+\sqrt{(x-1)^{2}+(y-\sqrt{3})^{2}}

So, f ( x , y ) = ( x 2 ) 2 + y 2 + x 2 + y 2 + ( x 1 ) 2 + ( y 3 ) 2 f(x,y)=\sqrt{(x-2)^{2}+y^{2}}+\sqrt{x^{2}+y^{2}}+\sqrt{(x-1)^{2}+(y-\sqrt{3})^{2}}

Now, rotate Δ P A B \Delta PAB in 6 0 60^\circ{} anticlockwise about point A A and construct the triangle Δ B B A \Delta BB^{'}A .

Let the image of point A A be A A^{'} , the image of point B B be B B^{'} , the image of point P P be P P^{'}

Δ P A B Δ P A B \Delta PAB\cong \Delta P^{'}A^{'}B^{'}

P A B = P A B \angle P^{'} A^{'} B^{'}=\angle PAB

Let P A B = P A B = θ \angle P^{'} A^{'} B^{'}=\angle PAB=\theta

P A B = 6 0 θ \angle P^{'} A^{'} B=60^\circ{}-\theta

P A B + P A B = 6 0 θ + θ = 6 0 \angle P^{'} A^{'} B+\angle PAB=60^\circ{}-\theta+\theta=60^\circ{}

P A P = 6 0 \angle PA^{'}P^{'}=60^\circ{}

and P A = P A |PA|=|P^{'}A^{'}| with point A A coinciding with point A A^{'}

So, Δ P A P \Delta PAP^{'} is an equilateral triangle.

P P = P A = P A |P^{'}P|=|P^{'}A|=|PA|

Since Δ P A B Δ P A B \Delta PAB\cong \Delta P^{'}A^{'}B^{'} ,

Then, P B = P B |P^{'}B^{'}|=|PB|

Therefore P A + P B + P C = P P + P B + P C |PA|+|PB|+|PC|=|P^{'}P|+|P^{'}B^{'}|+|PC|

When points B , P , P , C B^{'},P^{'},P,C are collinear,

P P + P B + P C = B C |P^{'}P|+|P^{'}B^{'}|+|PC|=|B^{'}C|

P P + P B + P C |P^{'}P|+|P^{'}B^{'}|+|PC| is minimum.

A B = A C = 2 , B A C = 6 0 × 2 = 12 0 A^{'}B^{'}=AC=2, \angle B^{'}A^{'}C=60^\circ{}\times 2=120^\circ{}

B C 2 = 2 2 + 2 2 2 ( 2 ) ( 2 ) cos 12 0 |B^{'}C|^{2}=2^{2}+2^{2}-2(2)(2)\cos120^\circ{}

B C 2 = 4 + 4 + 8 ( 1 2 ) |B^{'}C|^{2}=4+4+-8(\cfrac{-1}{2})

B C 2 = 12 |B^{'}C|^{2}=12

B C = 2 3 |B^{'}C|=2\sqrt{3}

Minimum value of P P + P B + P C = 2 3 |P^{'}P|+|P^{'}B^{'}|+|PC|=2\sqrt{3}

Hence, minimum value of f ( x , y ) = 2 3 f(x,y)=2\sqrt{3}

a + b = 2 + 3 = 5 a+b=2+3=5

See also, Fermat's Point

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...