This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pranav Arora
Jun 21, 2014

Split the integral as follows:

0 1 x ( 1 x 2 ) ( 1 + x 2 ) 2 ln ( 1 + x 1 x ) d x + 1 x ( 1 x 2 ) ( 1 + x 2 ) 2 ln ( x + 1 x 1 ) d x \displaystyle \int_0^1 \frac{x(1-x^2)}{(1+x^2)^2}\ln\left(\frac{1+x}{1-x}\right)\,dx+\int_1^{\infty} \frac{x(1-x^2)}{(1+x^2)^2}\ln\left(\frac{x+1}{x-1}\right)\,dx

In the second integral, perform the transformation x 1 x x \mapsto \dfrac{1}{x} to obtain:

0 1 1 x ( 1 x 2 1 + x 2 ) 2 ln ( 1 x 1 + x ) d x \displaystyle \int_0^1 \frac{1}{x}\left(\frac{1-x^2}{1+x^2}\right)^2\ln\left(\frac{1-x}{1+x}\right)\,dx

Next, use the substitution 1 x 1 + x = t d x = 2 ( 1 + t ) 2 d t \dfrac{1-x}{1+x}=t \Rightarrow dx=\dfrac{-2}{(1+t)^2}\,dt i.e

0 1 1 + t 1 t 4 t 2 ( 1 + t 2 ) 2 ln t 2 ( 1 + t ) 2 d t \int_0^1 \frac{1+t}{1-t}\frac{4t^2}{(1+t^2)^2}\ln t \frac{2}{(1+t)^2}\,dt = 8 0 1 t 2 ( 1 t 2 ) ( 1 + t 2 ) 2 ln t d t = I =8\int_0^1 \frac{t^2}{(1-t^2)(1+t^2)^2}\ln t\,dt=I

From integration by parts and using the following result:

t 2 ( 1 t 2 ) ( 1 + t 2 ) 2 d t = 1 8 ( 2 t 1 + t 2 ln ( 1 t ) + ln ( 1 + t ) ) + C \displaystyle \int \frac{t^2}{(1-t^2)(1+t^2)^2}\,dt=\frac{1}{8}\left(\frac{-2t}{1+t^2}-\ln(1-t)+\ln(1+t)\right)+C

I = ( ( 2 t 1 + t 2 ln ( 1 t ) + ln ( 1 + t ) ) ln t 0 1 0 1 ( 2 t 1 + t 2 ln ( 1 t ) + ln ( 1 + t ) ) 1 t d t \displaystyle \Rightarrow I=\left(\left(\frac{-2t}{1+t^2}-\ln(1-t)+\ln(1+t)\right)\ln t\right|_0^1-\int_0^1 \left(\frac{-2t}{1+t^2}-\ln(1-t)+\ln(1+t)\right)\frac{1}{t}\,dt

Notice that the first term is zero i.e

I = 0 1 2 1 + t 2 d t + 0 1 ln ( 1 t ) t d t 0 1 ln ( 1 + t ) t d t \displaystyle I=\int_0^1 \frac{2}{1+t^2}\,dt+\int_0^1 \frac{\ln(1-t)}{t}\,dt-\int_0^1 \frac{\ln(1+t)}{t}\,dt

I = J 1 + J 2 J 3 \Rightarrow I=J_1+J_2-J_3

J 1 = 0 1 2 1 + t 2 = 2 ( arctan t 0 1 = π 2 \displaystyle J_1=\int_0^1 \frac{2}{1+t^2}=2\left(\arctan t\right|_0^1=\frac{\pi}{2}

J 2 = 0 1 ln ( 1 t ) t d t = k = 1 1 k 0 1 t k 1 d t = k = 1 1 k 2 = π 2 6 \displaystyle J_2=\int_0^1 \frac{\ln(1-t)}{t}\,dt=-\sum_{k=1}^{\infty} \frac{1}{k}\int_0^1 t^{k-1}\,dt=-\sum_{k=1}^{\infty} \frac{1}{k^2}=-\frac{\pi^2}{6}

J 3 = 0 1 ln ( 1 + t ) t d t = k = 1 ( 1 ) k k 0 1 t k 1 d t = k = 1 ( 1 ) k k 2 = π 2 12 \displaystyle J_3=\int_0^1 \frac{\ln(1+t)}{t}\,dt=-\sum_{k=1}^{\infty} \frac{(-1)^k}{k}\int_0^1 t^{k-1}\,dt=-\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}=\frac{\pi^2}{12}

Hence,

I = π 2 π 2 6 π 2 12 = π 2 π 2 4 \displaystyle I=\frac{\pi}{2}-\frac{\pi^2}{6}-\frac{\pi^2}{12}=\boxed{\dfrac{\pi}{2}-\dfrac{\pi^2}{4}}

How do you come up with these solutions??

This is insane

John M. - 6 years, 11 months ago

i dont understand the transformation x--- 1/x

Alex Vidal - 6 years, 9 months ago

this is genius man!!

Kunal Gupta - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...