The Mysterious Number

Each letter in the following cryptogram represents a distinct, non-zero digit: A B C D E F × 3 B C D E F A . \begin{array}{ccccccc} & A & B & C & D & E & F \\ \times & & & & & & 3 \\ \hline & B & C & D & E & F & A. \end{array} What is A + B + C + D + E + F ? A+B+C+D+E+F?


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jonathan Quarrie
Oct 7, 2017

Where x \color{#3D99F6}x represents the 5 digits B C D E F \color{#3D99F6}BCDEF .

100000 A + x = 10 x + A 3 100000\color{#D61F06}A \color{#333333}+\color{#3D99F6}x \color{#333333}= \dfrac{10\color{#3D99F6}x \color{#333333}+\color{#D61F06}A\color{#333333}}{3}

300000 A + 3 x = 10 x + A 300000\color{#D61F06}A \color{#333333}+3\color{#3D99F6}x \color{#333333}= 10\color{#3D99F6}x \color{#333333}+\color{#D61F06}A

299999 A = 7 x 299999\color{#D61F06}A \color{#333333} = 7\color{#3D99F6}x

42857 A = x 42857\color{#D61F06}A \color{#333333} = \color{#3D99F6}x


The digit A \color{#D61F06}A cannot be greater than 2, otherwise x \color{#3D99F6}x ( B C D E F \color{#3D99F6}BCDEF ) would be a 6 digit number.

The digit A \color{#D61F06}A also cannot be 0 0 , otherwise A B C D E F \color{#D61F06}A\color{#3D99F6}BCDEF would be a 5 digit number.

This leaves A = 1 \color{#D61F06}A \color{#333333}= 1 and A = 2 \color{#D61F06}A \color{#333333}= 2 . Both of which actually satisfy this problem using different combinations of the same 6 distinct digits.

1 42857 × 3 = 42857 1 \color{#D61F06}1\color{#3D99F6}42857\color{#333333} \times 3 = \color{#3D99F6}42857\color{#D61F06}1

2 85714 × 3 = 85714 2 \color{#D61F06}2\color{#3D99F6}85714\color{#333333} \times 3 = \color{#3D99F6}85714\color{#D61F06}2


The digits 1 , 2 , 4 , 5 , 7 , 8 1, 2, 4, 5 ,7, 8 appear in all of the 6-digit numbers above.

1 + 2 + 4 + 5 + 7 + 8 = 27 1+2+4+5+7+8 = \large\boxed{27}

Plz note that x is 42857A, not 42875A.

Pepper Mint - 3 years, 8 months ago

Log in to reply

Thanks for catching my typo. I've fix it.

Jonathan Quarrie - 3 years, 8 months ago
Pepper Mint
Oct 6, 2017

The number A B C D E F ABCDEF is 100 , 000 A + 10 , 000 B + 1 , 000 C + 100 D + 10 E + F 100,000A+10,000B+1,000C+100D+10E+F , and B C D E F A BCDEFA is 100 , 000 B + 10 , 000 C + 1 , 000 D + 100 E + 10 F + A 100,000B+10,000C+1,000D+100E+10F+A .

Since B C D E F A BCDEFA is 3 3 times bigger than A B C D E F ABCDEF , 300 , 000 A + 30 , 000 B + 3 , 000 C + 300 D + 30 E + 3 F = 100 , 000 B + 10 , 000 C + 1 , 000 D + 100 E + 10 F + A 300,000A+30,000B+3,000C+300D+30E+3F=100,000B+10,000C+1,000D+100E+10F+A .

299 , 999 A = 70 , 000 B + 7 , 000 C + 700 D + 70 E + F , 42 , 857 A = 10 , 000 B + 1 , 000 C + 100 D + 10 E + F 299,999A=70,000B+7,000C+700D+70E+F, 42,857A=10,000B+1,000C+100D+10E+F (=the number B C D E F BCDEF ).

If A = 1 A=1 , the number is 142857 142857 , and if A = 2 A=2 , the number is 285714 285714 .

Thus, A + B + C + D + E + F = 1 + 4 + 2 + 8 + 5 + 7 = 2 + 8 + 5 + 7 + 1 + 4 = 27 A+B+C+D+E+F=1+4+2+8+5+7=2+8+5+7+1+4=27 .

I suppose I should return the favour, and point out that when A=2, the number is 285714, not 428571 (142857 * 3).

Jonathan Quarrie - 3 years, 8 months ago

Log in to reply

Oh, I've made a typo too! I think it was not easy to write that number without typo.

Pepper Mint - 3 years, 8 months ago

Interestingly, all numbers are the repeating digits of the decimal representations of fractions x/7. 1/7 = 0.142857..., 2/7 = 0.285714..., 3/7 = 0.428571, and 6/7 = 0.857142....

Eric Lucas - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...