The n-th of what?

Calculus Level 3

Evaluate, if possible,

2 ln ( n = 1 1 n n x ) d x \int_{\infty}^{2} \ln \left( \prod_{n=1}^{\infty} \sqrt[n^x]{\frac{1}{n}} \right) dx

2 π 2\pi 1 ζ ( 2 ) 1 - \zeta(2) e e It diverges.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shasha Tewari
Aug 12, 2019

NOTE: This is my first time using LaTeX (or writing an answer), have mercy on me for the spacing errors. Also, I'm pretty sure none of the answer choices are right. First, some algebraic manipulation: log i = 1 x i = log x 1 + log x 2 + log x i \text{First, some algebraic manipulation:} \\ \log { \prod _{ i=1 } x_{ i } } =\log { x_{ 1 } } +\log { x_{ 2 } } +\dots \log { x_{ i } } Therefore we now have: ln n = 1 1 n n x = n = 1 ln ( n ) n x \\ \text{Therefore we now have:} \\ \ln { \prod _{ n=1 }^{ \infty }{ \sqrt [ n^{ x } ]{ \frac { 1 }{ n } } } } =\sum _{ n=1 }^{ \infty }{ \frac { -\ln { (n) } }{ n^{ x } } }

In the integral form below, a good technique that comes to mind is the application of Fubini’s theorem. For this, we need the to make sure that neither the sum nor the integral explodes (precisely, they must converge absolutely, but the integrand is strictly positive). I will only check the sum, and we will see that the integral converges after interchanging the sum and the integral. 2 n = 1 ln ( n ) n x d x \\ \text{In the integral form below, a good technique that comes to mind is the application of Fubini's theorem. For this, we need the to make sure that neither} \\ \text {the sum nor the integral explodes (precisely, they must converge absolutely, but the integrand is strictly positive). I will only check the sum, and we} \\ \text{will see that the integral converges after interchanging the sum and the integral. }\\ \int _{ 2 }^{ \infty }{ \sum _{ n=1 }^{ \infty }{ \frac { \ln { (n) } }{ n^{ x } } } } dx We observe the following in the limit of large n. Since this only gets "worse" in higher powers, it is sufficent to check if the sum converges for x=2. ln ( n ) n 2 \\ \text{We observe the following in the limit of large n. Since this only gets "worse" in higher powers, it is sufficent to check if the sum converges for x=2.} \\ \ln { (n) } \ll n^{ 2 } The final answerline is the left to the reader as an integration by parts problem, but shows that the integral converges. 1 ln ( n ) n 2 d x = 0 u e u d x \\ \text{The final answerline is the left to the reader as an integration by parts problem, but shows that the integral converges.} \\\int _{ 1 }^{ \infty } \frac { \ln { (n) } }{ n^{ 2 } } dx =\int_0^{\infty}{ue^{-u}}dx

Now interchanging... n = 1 ln ( n ) 2 n x d x \\ \text{Now interchanging...} \\ \sum_{n=1}^{\infty}\ln{(n)}\int_2^{\infty}n^{-x}dx Where x is evaluated at 2 and infinity. (I couldn’t get the "bar" to format correctly) n = 1 e x ln ( n ) \\ \text{Where x is evaluated at 2 and infinity. (I couldn't get the "bar" to format correctly)}\\ \sum_{n=1}^{\infty} -e^{-x\ln{(n)}}
Surprisingly, none of the answers seem to be right! The difference can be explained if the sum was taken from 2 to infinity and if the writer (or me) missed a sign. Regardless, the closest answer (and [possibly] correct) contains zeta. n = 1 1 n 2 = ζ ( 2 ) I may have missed something, reply if you found an error! Thanks all. \\ \text{Surprisingly, none of the answers seem to be right! The difference can be explained if the sum was taken from 2 to infinity and if the writer (or me)} \\ \text{missed a sign. Regardless, the closest answer (and [possibly] correct) contains zeta. }\\ \sum_{n=1}^{\infty}\frac{1}{n^2}= \zeta{(2)} \\ \text{I may have missed something, reply if you found an error! Thanks all.}

Me too i also got ζ(2). Nevertheless yours is a good solution keep it up.👍

Syed Shahabudeen - 1 year, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...