The Natural Logarithm of Complex Numbers

Algebra Level 3

Let's extend the natural logarithm to the complex numbers using the definition ln a = x \ln{a}=x given e x = a e^x=a , where a a and x x can be any complex number. Note that this makes the natural logarithm a multivalued function.

Find the smallest possible value of ln ( 3 + 4 i ) |\ln{(3+4i)}| .

Bonus: Express ln ( a + b i ) \ln{(a+bi)} in algebraic form.

Notations:


The answer is 1.8574624667295145.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 16, 2017

Relevant wiki: Euler's Formula

ln ( 3 + 4 i ) = ln ( 5 ( 3 5 + 4 5 i ) ) By Euler’s formula: cos θ + i sin θ = e θ i = ln 5 + ln ( e ( tan 1 4 3 + k π ) i ) where k Z ln ( 3 + 4 i ) = ln 2 5 + ( tan 1 4 3 + k π ) 2 Minimum when k = 0 = ln 2 5 + ( tan 1 4 3 ) 2 1.857 \begin{aligned} \ln (3+4i) & = \ln \left(5\left({\color{#3D99F6}\frac 35 + \frac 45i}\right)\right) & \small \color{#3D99F6} \text{By Euler's formula: }\cos \theta + i\sin \theta = e^{\theta i} \\ & = \ln 5 + \ln \left({\color{#3D99F6}e^{\left(\tan^{-1}\frac 43 + k\pi\right)i}}\right) & \small \color{#3D99F6} \text{where }k \in \mathbb Z \\ \implies |\ln (3+4i)| & = \sqrt{\ln^25 + \left(\tan^{-1}\frac 43 + k\pi \right)^2} & \small \color{#3D99F6} \text{Minimum when }k=0 \\ & = \sqrt{\ln^25 + \left(\tan^{-1}\frac 43 \right)^2} \\ & \approx \boxed{1.857} \end{aligned}

Note: some of the identities used here, ln a b = ln a + ln b \ln{ab}=\ln{a}+\ln{b} and ln e a = a \ln{e^a}=a , may not necessarily work with complex numbers.

Nick Turtle - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...