The nested radicals are back for 2016!

Algebra Level 5

x = 1 2016 [ x 2 + x + 1 ] + [ x 2 + x + 1 ] [ x 2 + x + 1 ] + [ x 2 + x + 1 ] x = 1 2016 [ x 2 + x + 1 ] [ x 2 + x + 1 ] + [ x 2 + x + 1 ] [ x 2 + x + 1 ] + \displaystyle \frac{\displaystyle\sum_{x=1}^{2016} \sqrt{\left[x^{2} + x + 1 \right]+\sqrt{\left[x^{2} + x + 1\right]-\sqrt{\left[x^{2} + x + 1 \right]+\sqrt{\left[x^{2} + x + 1 \right]-\cdots}}}}}{\displaystyle \sum_{x=1}^{2016} \sqrt{\left[x^{2} + x + 1 \right]-\sqrt{\left[x^{2} + x + 1\right]+\sqrt{\left[x^{2} + x + 1 \right]-\sqrt{\left[x^{2} + x + 1 \right]+\cdots}}}}} If the value of the expression above can be represented in the form a b \dfrac{a}{b} , where a a and b b are coprime integers, find b a b-a .


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshat Sharda
Feb 1, 2016

Let us first try to generalize a few things,

a + a a + a = m a a + a a + = n { a + n = m a m = n \sqrt{ a+\sqrt{ a- \sqrt{a+ \sqrt{a-\ldots } }}}=m \\ \sqrt{ a-\sqrt{ a+ \sqrt{a- \sqrt{a+\ldots } }}}=n \\ \Rightarrow \begin{cases} \sqrt{a+n}=m \\ \sqrt{a-m}=n \end{cases}

Squaring both the equations,

a + n = m 2 a m = n 2 m 2 n 2 = m + n m n = 1 a+n=m^2 \\ a-m=n^2 \\ m^2-n^2=m+n \\ m-n=1

Now placing m = a + n m=\sqrt{a+n} in and squaring,

a + n = n 2 + 2 n + 1 n 2 + n + 1 a = 0 n = 1 + 1 4 ( 1 a ) 2 a+n=n^2+2n+1 \\ n^2+n+1-a=0 \\ n=\frac{-1+\sqrt{1-4(1-a)}}{2}

Similarly,

m = 1 + 1 4 ( 1 a ) 2 m= \frac{1+\sqrt{1-4(1-a)}}{2}

So, in our original question, a = x 2 + x + 1 a=x^2+x+1 and therefore,

n = 1 + 1 4 ( 1 x 2 x 1 ) 2 = 1 + 4 x 2 + 4 x + 1 2 = 2 x 2 = x \begin{aligned} n & = \frac{-1+\sqrt{1-4(1-x^2-x-1)}}{2} \\ &= \frac{-1+\sqrt{4x^2+4x+1}}{2} \\ &= \frac{2x}{2}=x \end{aligned}

Similarly,

m = x + 1 m=x+1

So,

= x = 1 2016 [ x 2 + x + 1 ] + [ x 2 + x + 1 ] [ x 2 + x + 1 ] + [ x 2 + x + 1 ] x = 1 2016 [ x 2 + x + 1 ] [ x 2 + x + 1 ] + [ x 2 + x + 1 ] [ x 2 + x + 1 ] + = x = 1 2016 ( x + 1 ) x = 1 2016 x = x = 2 2017 x x = 1 2016 x = 2019 2017 2017 2019 = 2 =\frac{\displaystyle\sum_{x=1}^{2016} \sqrt{\left[x^{2} + x + 1 \right]+\sqrt{\left[x^{2} + x + 1\right]-\sqrt{\left[x^{2} + x + 1 \right]+\sqrt{\left[x^{2} + x + 1 \right]-\cdots}}}}}{\displaystyle \sum_{x=1}^{2016} \sqrt{\left[x^{2} + x + 1 \right]-\sqrt{\left[x^{2} + x + 1\right]+\sqrt{\left[x^{2} + x + 1 \right]-\sqrt{\left[x^{2} + x + 1 \right]+\cdots}}}}} \\ = \frac{\displaystyle \sum^{2016}_{x=1}(x+1)}{\displaystyle \sum^{2016}_{x=1}x } = \frac{\displaystyle \sum^{2017}_{x=2}x}{\displaystyle \sum^{2016}_{x=1}x } = \frac{2019}{2017} \\ \Rightarrow 2017-2019=\boxed{-2}

Nice solution.

Akshay Yadav - 5 years, 4 months ago

Really very elegant solution. Deserves multiple upvotes ;)

Nihar Mahajan - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...