If and are positive real numbers and , then the minimum of is , where and are coprime positive integers. Find the value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Using Jensen's Inequality with f ( z ) = z 4 , we have that
2 a 4 + b 4 ≥ ( 2 a + b ) 4 ⟹ a 4 + b 4 ≥ 2 × ( 2 1 ) 4 = 8 1 .
The minimum is achieved when a = b = 2 1 , so x + y = 1 + 8 = 9 .