The numerators diverge much faster this time

Calculus Level 3

It is well known that

e = k = 1 1 ( k 1 ) ! = 1 0 ! + 1 1 ! + 1 2 ! + 1 3 ! + e = \sum_{k=1}^\infty \dfrac{1}{(k-1)!} = \dfrac{1}{ 0!} + \dfrac{1}{1!} + \dfrac{1}{2!} + \dfrac{1}{3!} + \cdots

This value is also known (see Calvin's problem )

k = 1 k ( k 1 ) ! = 1 0 ! + 2 1 ! + 3 2 ! + 4 3 ! + = x \sum_{k=1}^{\infty} \dfrac{ k} {(k-1)!} = \dfrac{1}{0!} + \dfrac{2}{ 1!} + \dfrac{3}{2!} + \dfrac{ 4}{3!} + \cdots \quad = x ( x x is kept secret here so Calvin's problem isn't spoiled.)

So what is

k = 1 k 2 ( k 1 ) ! = 1 0 ! + 4 1 ! + 9 2 ! + 16 3 ! + ? \sum_{k=1}^{\infty} \dfrac{k^2} {(k-1)!} = \dfrac{1}{0!} + \dfrac{4}{ 1!} + \dfrac{9}{2!} + \dfrac{16}{3!} + \cdots \quad ?

Notation : ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 . And 0 ! = 1 0!=1 as always.

4 e 4e e 3 e^3 5 e 5e 3 e 3e e 2 e^2 e 4 e^4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Alex G
Aug 26, 2016

WARNING: PLEASE DO CALVIN'S PROBLEM BEFORE READING THIS SOLUTION. THIS SOLUTION USES THE SOLUTION TO CALVIN'S PROBLEM

Let's use some clever manipulation: the series in the problem is equal to

k = 0 ( k + 1 ) 2 k ! \large \sum_{k=0}^{\infty}\dfrac{{(k+1)}^2}{k!}

Now we expand the numerator:

k = 0 k 2 + 2 k + 1 k ! \large \sum_{k=0}^{\infty}\dfrac{k^2+2k+1}{k!}

Breaking up the numerator into three separate sums:

k = 0 k 2 k ! + 2 k = 0 k k ! + k = 0 1 k ! \large \sum_{k=0}^{\infty}\dfrac{k^2}{k!}+2\sum_{k=0}^{\infty}\dfrac{k}{k!}+\sum_{k=0}^{\infty}\dfrac{1}{k!}

The third sum is equal to e e , as given in the problem. The first term of the other two summations is zero, which allows us to change the index to begin at 1.

k = 1 k 2 k ! + 2 k = 1 k k ! + e \large \sum_{k= \color{#D61F06}{1}}^{\infty}\dfrac{k^2}{k!}+2\sum_{k=\color{#D61F06}{1}}^{\infty}\dfrac{k}{k!}+e

Simplifying fractions:

k = 1 k ( k 1 ) ! + 2 k = 1 1 ( k 1 ) ! + e \large \sum_{k= 1}^{\infty}\dfrac{k}{(k-1)!}+2\sum_{k=1}^{\infty}\dfrac{1}{(k-1)!}+e

The second series is equal to e e , as given in the problem. The first series is equal to x x , the solution to Calvin's problem, which is 2 e 2e

2 e + 2 e + e = 5 e 2e + 2e + e = \boxed{5e}

Split by partial fraction , k 2 ( k 1 ) ! = 1 ( k 3 ) ! + 3 ( k 2 ) ! + 1 ( k 1 ) ! \displaystyle \frac{k^2}{(k-1)!} = \frac{1}{(k-3)!}+\frac{3}{(k-2)!}+\frac{1}{(k-1)!}

Summing both sides from k = 1 k=1 to \infty , we have k = 1 k 2 ( k 1 ) ! = k = 1 ( 1 ( k 3 ) ! + 3 ( k 2 ) ! + 1 ( k 1 ) ! ) = 5 e \displaystyle \sum_{k=1}^{\infty}\frac{k^2}{(k-1)!}= \sum_{k=1}^{\infty} ( \frac{1}{(k-3)!}+\frac{3}{(k-2)!}+\frac{1}{(k-1)!}) = 5e

Subtracting x and e we get x e = 1 1 ! + 2 2 ! + 3 3 ! + 4 4 ! + x-e= \dfrac{1}{1!} +\dfrac{2}{2!} + \dfrac{3}{3!} + \dfrac{4}{4!} + \cdots Simplifying the fractions, x e = 1 1 ! + 1 1 ! + 1 2 ! + 1 3 ! + x-e= \dfrac{1}{1!} +\dfrac{1}{1!} + \dfrac{1}{2!} + \dfrac{1}{3!} + \cdots , which is equal to e. So we have x e = e x = 2 e x-e=e \implies x=2e . Now let's set k = 1 k 2 ( k 1 ) ! = y \sum_{k=1}^{\infty} \dfrac{k^2}{(k-1)!} = y It follows that y 4 e = k = 1 k 2 2 k ( k 1 ) ! = k = 1 ( k 1 ) 2 ( k 1 ) ! 1 ( k 1 ) ! = k = 2 k 1 ( k 2 ) ! k = 1 1 ( k 1 ) ! = 2 e e = e y-4e=\sum_{k=1}^{\infty} \dfrac{k^2-2k}{(k-1)!} = \sum_{k=1}^{\infty} \dfrac{(k-1)^2}{(k-1)!} - \dfrac{1}{(k-1)!} = \sum_{k=2}^{\infty} \dfrac{k-1}{(k-2)!} - \sum_{k=1}^{\infty} \dfrac{1}{(k-1)!} = 2e-e=e Therefore, y 4 e = e y = 5 e y-4e=e \implies y=5e

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...