The Odd Terms

Algebra Level 2

Given that a 1 , a 2 , a 3 , , a 21 a_1, a_2 , a_3, \cdots, a_{21} are in an arithmetic progression and the value of i = 1 21 a i = 693 \sum_{i = 1}^{21} a_i = 693 Find the value of r = 0 10 a 2 r + 1 \sum_{r = 0}^{10} a_{2r + 1}


The answer is 363.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 24, 2020

The sum of n n consecutive terms of an arithmetic progression is given by S = n 2 ( a a + a z ) S = \dfrac n2(a_a + a_z) , where a a a_a and a z a_z , respectively, are the first and last terms of the n n terms. Therefore,

k = 1 21 a k = 21 2 ( a a + a z ) = 21 2 ( a 1 + a 21 ) = 693 a 1 + a 21 2 = 693 21 = 33 k = 0 10 a 2 k + 1 = 11 2 ( a a + a z ) = 11 2 ( a 1 + a 21 ) = 11 × 33 = 363 \begin{aligned} \sum_{k=1}^{21} a_k & = \frac {21}2 (a_a + a_z) = \frac {21}2 (a_1 + a_{21}) = 693 \\ \implies \frac {a_1+a_{21}}2 & = \frac {693}{21} = 33 \\ \implies \sum_{k=0}^{10} a_{2k+1} & = \frac {11}2 (a_a + a_z) = \frac {11}2 (a_1 + a_{21}) = 11 \times 33 = \boxed{363} \end{aligned}

Mahdi Raza
May 4, 2020

Let a 11 a_{11} be the middle value

a 1 + a 2 + + a 11 + + a 20 + a 21 = 693 ( a 11 10 d ) + ( a 11 9 d ) + + a 11 + + ( a 11 + 9 d ) + ( a 11 + 10 d ) = 693 21 ( a 11 ) = 693 a 11 = 33 \begin{aligned} a_{1} + a_{2} + \ldots + a_{11} + \ldots + a_{20} + a_{21} &= 693 \\ (a_{11} - 10d) + (a_{11} - 9d) + \ldots + a_{11} + \ldots + (a_{11} + 9d) + (a_{11} + 10d) &= 693 \\ 21(a_{11}) &= 693 \\ a_{11} &= 33 \end{aligned}

a 1 + a 3 + + a 11 + + a 19 + a 21 = ? ( a 11 10 d ) + ( a 11 8 d ) + + a 11 + + ( a 11 + 8 d ) + ( a 11 + 10 d ) = ? 11 ( a 11 ) = ? 11 ( 33 ) = 363 \begin{aligned} a_{1} + a_{3} + \ldots + a_{11} + \ldots + a_{19} + a_{21} &= ? \\ (a_{11} - 10d) + (a_{11} - 8d) + \ldots + a_{11} + \ldots + (a_{11} + 8d) + (a_{11} + 10d) &= ? \\ 11(a_{11}) &= ? \\ 11 (33) &= \boxed{363} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...