Consider all matrices with integer entries, such that is the identity matrix, for some positive integer The smallest such is called the order of What is the largest possible order of such a matrix
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If k is the order of A , then the minimum polynomial m ( X ) of A must divide X k − 1 . Since X k − 1 = j ∣ k ∏ Φ j ( X ) we deduce that m ( X ) must be a product of cyclotomic polynomials m ( X ) = Φ j 1 ( X ) Φ j 2 ( X ) ⋯ Φ j m ( X ) where 1 ≤ j 1 < j 2 < ⋯ < j m and j 1 , j 2 , … , j m are all divisors of k . Since k is the order of A , no smaller power of A is equal to the identity I , and hence m ( X ) does not divide X j − 1 for any j < k . Thus we deduce that the least common multiple of j 1 , j 2 , … , j m is equal to k .
On the other hand, A is a 6 × 6 matrix, and hence m ( X ) divides the characteristic polynomial χ ( X ) of A , which has degree 6 . Since Φ j ( X ) has degree φ ( j ) for any j ∈ N , we deduce that φ ( j 1 ) + φ ( j 2 ) + ⋯ + φ ( j m ) ≤ 6 .
The positive integers k for which φ ( k ) ≤ 6 are 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 2 , 1 4 , 1 8 , with φ ( k ) 1 2 4 6 k 1 , 2 3 , 4 , 6 5 , 8 , 1 0 , 1 2 7 , 9 , 1 4 , 1 8 Possible values for m ( X ) , and matching values for the order k , are: Degree 1 2 3 4 5 6 m ( X ) Φ 1 , Φ 2 Φ 3 , Φ 4 , Φ 6 , Φ 1 Φ 2 Φ 1 Φ 3 , Φ 1 Φ 4 , Φ 1 Φ 6 Φ 2 Φ 3 , Φ 2 Φ 4 , Φ 2 Φ 6 Φ 5 , Φ 8 , Φ 1 0 , Φ 1 2 Φ 3 Φ 4 , Φ 3 Φ 6 , Φ 4 Φ 6 Φ 1 Φ 2 Φ 3 , Φ 1 Φ 2 Φ 4 , Φ 1 Φ 2 Φ 6 Φ 1 Φ 5 , Φ 1 Φ 8 , Φ 1 Φ 1 0 , Φ 1 Φ 1 2 Φ 2 Φ 5 , Φ 2 Φ 8 , Φ 2 Φ 1 0 , Φ 2 Φ 1 2 Φ 1 Φ 3 Φ 4 , Φ 1 Φ 3 Φ 6 , Φ 1 Φ 4 Φ 6 Φ 2 Φ 3 Φ 4 , Φ 2 Φ 3 Φ 6 , Φ 2 Φ 4 Φ 6 Φ 7 , Φ 9 , Φ 1 4 , Φ 1 8 Φ 3 Φ 5 , Φ 3 Φ 8 , Φ 3 Φ 1 0 , Φ 3 Φ 1 2 Φ 4 Φ 5 , Φ 4 Φ 8 , Φ 4 Φ 1 0 , Φ 4 Φ 1 2 Φ 6 Φ 5 , Φ 6 Φ 8 , Φ 6 Φ 1 0 , Φ 6 Φ 1 2 Φ 1 Φ 2 Φ 5 , Φ 1 Φ 2 Φ 8 , Φ 1 Φ 2 Φ 1 0 , Φ 1 Φ 2 Φ 1 2 Φ 3 Φ 4 Φ 6 Φ 1 Φ 2 Φ 3 Φ 4 , Φ 1 Φ 2 Φ 3 Φ 6 , Φ 1 Φ 2 Φ 4 Φ 6 k 1 , 2 3 , 4 , 6 , 2 3 , 4 , 6 6 , 4 , 6 5 , 8 , 1 0 , 1 2 1 2 , 6 , 1 2 6 , 4 , 6 5 , 8 , 1 0 , 1 2 1 0 , 8 , 1 0 , 1 2 1 2 , 6 , 1 2 1 2 , 6 , 1 2 7 , 9 , 1 4 , 1 8 1 5 , 2 4 , 3 0 , 1 2 2 0 , 8 , 2 0 , 1 2 3 0 , 2 4 , 3 0 , 1 2 1 0 , 8 , 1 0 , 1 2 1 2 1 2 , 6 , 1 2 Thus the largest possible value of k is 3 0 , and it is obtained with any one of Φ 3 ( X ) Φ 1 0 ( X ) , Φ 6 ( X ) Φ 5 ( X ) and Φ 6 ( X ) Φ 1 0 ( X ) as minimum polynomial.
It remains to show that a 6 × 6 matrix can be found with the desired minimum polynomial. Considering companion matrices, the matrix ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 0 1 0 0 0 0 − 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 − 1 − 1 − 1 − 1 ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞ has minimum and characteristic polynomial Φ 6 ( X ) Φ 5 ( X ) , and hence has order 3 0 .