The Order of the Matrix

Consider all 6 × 6 6\times 6 matrices A A with integer entries, such that A k A^k is the identity matrix, for some positive integer k . k. The smallest such k k is called the order of A . A. What is the largest possible order of such a matrix A ? A?


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 30, 2013

If k k is the order of A A , then the minimum polynomial m ( X ) m(X) of A A must divide X k 1 X^k-1 . Since X k 1 = j k Φ j ( X ) X^k - 1 \; = \; \prod_{j | k} \Phi_j(X) we deduce that m ( X ) m(X) must be a product of cyclotomic polynomials m ( X ) = Φ j 1 ( X ) Φ j 2 ( X ) Φ j m ( X ) m(X) \; = \; \Phi_{j_1}(X)\Phi_{j_2}(X) \cdots \Phi_{j_m}(X) where 1 j 1 < j 2 < < j m 1 \le j_1 < j_2 < \cdots < j_m and j 1 , j 2 , , j m j_1,j_2,\ldots,j_m are all divisors of k k . Since k k is the order of A A , no smaller power of A A is equal to the identity I I , and hence m ( X ) m(X) does not divide X j 1 X^j - 1 for any j < k j < k . Thus we deduce that the least common multiple of j 1 , j 2 , , j m j_1,j_2,\ldots,j_m is equal to k k .

On the other hand, A A is a 6 × 6 6\times6 matrix, and hence m ( X ) m(X) divides the characteristic polynomial χ ( X ) \chi(X) of A A , which has degree 6 6 . Since Φ j ( X ) \Phi_j(X) has degree φ ( j ) \varphi(j) for any j N j \in \mathbb{N} , we deduce that φ ( j 1 ) + φ ( j 2 ) + + φ ( j m ) 6 \varphi(j_1) + \varphi(j_2) + \cdots + \varphi(j_m) \le 6 .

The positive integers k k for which φ ( k ) 6 \varphi(k) \le 6 are 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 14 , 18 1,2,3,4,5,6,7,8,9,10,12,14,18 , with φ ( k ) k 1 1 , 2 2 3 , 4 , 6 4 5 , 8 , 10 , 12 6 7 , 9 , 14 , 18 \begin{array}{|c|c|} \hline \varphi(k) & k \\ \hline 1 & 1,2 \\ 2 & 3,4,6 \\ 4 & 5,8,10,12 \\ 6 & 7,9,14,18 \\ \hline \end{array} Possible values for m ( X ) m(X) , and matching values for the order k k , are: Degree m ( X ) k 1 Φ 1 , Φ 2 1 , 2 2 Φ 3 , Φ 4 , Φ 6 , Φ 1 Φ 2 3 , 4 , 6 , 2 3 Φ 1 Φ 3 , Φ 1 Φ 4 , Φ 1 Φ 6 Φ 2 Φ 3 , Φ 2 Φ 4 , Φ 2 Φ 6 3 , 4 , 6 6 , 4 , 6 4 Φ 5 , Φ 8 , Φ 10 , Φ 12 Φ 3 Φ 4 , Φ 3 Φ 6 , Φ 4 Φ 6 Φ 1 Φ 2 Φ 3 , Φ 1 Φ 2 Φ 4 , Φ 1 Φ 2 Φ 6 5 , 8 , 10 , 12 12 , 6 , 12 6 , 4 , 6 5 Φ 1 Φ 5 , Φ 1 Φ 8 , Φ 1 Φ 10 , Φ 1 Φ 12 Φ 2 Φ 5 , Φ 2 Φ 8 , Φ 2 Φ 10 , Φ 2 Φ 12 Φ 1 Φ 3 Φ 4 , Φ 1 Φ 3 Φ 6 , Φ 1 Φ 4 Φ 6 Φ 2 Φ 3 Φ 4 , Φ 2 Φ 3 Φ 6 , Φ 2 Φ 4 Φ 6 5 , 8 , 10 , 12 10 , 8 , 10 , 12 12 , 6 , 12 12 , 6 , 12 6 Φ 7 , Φ 9 , Φ 14 , Φ 18 Φ 3 Φ 5 , Φ 3 Φ 8 , Φ 3 Φ 10 , Φ 3 Φ 12 Φ 4 Φ 5 , Φ 4 Φ 8 , Φ 4 Φ 10 , Φ 4 Φ 12 Φ 6 Φ 5 , Φ 6 Φ 8 , Φ 6 Φ 10 , Φ 6 Φ 12 Φ 1 Φ 2 Φ 5 , Φ 1 Φ 2 Φ 8 , Φ 1 Φ 2 Φ 10 , Φ 1 Φ 2 Φ 12 Φ 3 Φ 4 Φ 6 Φ 1 Φ 2 Φ 3 Φ 4 , Φ 1 Φ 2 Φ 3 Φ 6 , Φ 1 Φ 2 Φ 4 Φ 6 7 , 9 , 14 , 18 15 , 24 , 30 , 12 20 , 8 , 20 , 12 30 , 24 , 30 , 12 10 , 8 , 10 , 12 12 12 , 6 , 12 \begin{array}{|c|c|c|} \hline \mbox{Degree} & m(X) & k \\ \hline 1 & \Phi_1,\Phi_2 & 1,2 \\ \hline 2 & \Phi_3,\Phi_4,\Phi_6,\Phi_1\Phi_2 & 3,4,6,2 \\ \hline 3 & \begin{array}{c} \Phi_1\Phi_3,\Phi_1\Phi_4,\Phi_1\Phi_6 \\ \Phi_2\Phi_3,\Phi_2\Phi_4,\Phi_2\Phi_6 \end{array} & \begin{array}{c}3,4,6\\6,4,6\end{array} \\ \hline 4 & \begin{array}{c} \Phi_5,\Phi_8,\Phi_{10},\Phi_{12} \\ \Phi_3\Phi_4,\Phi_3\Phi_6,\Phi_4\Phi_6 \\ \Phi_1\Phi_2\Phi_3,\Phi_1\Phi_2\Phi_4,\Phi_1\Phi_2\Phi_6 \end{array} & \begin{array}{c} 5,8,10,12 \\ 12,6,12 \\ 6,4,6 \end{array} \\ \hline 5 & \begin{array}{c} \Phi_1\Phi_5,\Phi_1\Phi_8,\Phi_1\Phi_{10},\Phi_1\Phi_{12} \\ \Phi_2\Phi_5,\Phi_2\Phi_8,\Phi_2\Phi_{10},\Phi_2\Phi_{12} \\ \Phi_1\Phi_3\Phi_4,\Phi_1\Phi_3\Phi_6,\Phi_1\Phi_4\Phi_6 \\ \Phi_2\Phi_3\Phi_4,\Phi_2\Phi_3\Phi_6,\Phi_2\Phi_4\Phi_6 \end{array} & \begin{array}{c} 5,8,10,12\\10,8,10,12\\12,6,12\\12,6,12 \end{array} \\ \hline 6 & \begin{array}{c} \Phi_7,\Phi_9,\Phi_{14},\Phi_{18} \\ \Phi_3\Phi_5,\Phi_3\Phi_8,\Phi_3\Phi_{10},\Phi_3\Phi_{12} \\ \Phi_4\Phi_5,\Phi_4\Phi_8,\Phi_4\Phi_{10},\Phi_4\Phi_{12} \\ \Phi_6\Phi_5,\Phi_6\Phi_8,\Phi_6\Phi_{10},\Phi_6\Phi_{12} \\ \Phi_1\Phi_2\Phi_5,\Phi_1\Phi_2\Phi_8,\Phi_1\Phi_2\Phi_{10},\Phi_1\Phi_2\Phi_{12} \\ \Phi_3\Phi_4\Phi_6 \\ \Phi_1\Phi_2\Phi_3\Phi_4,\Phi_1\Phi_2\Phi_3\Phi_6,\Phi_1\Phi_2\Phi_4\Phi_6 \end{array} & \begin{array}{c} 7,9,14,18 \\ 15,24,30,12\\ 20,8,20,12\\30,24,30,12 \\10,8,10,12\\12\\12,6,12 \end{array} \\ \hline \end{array} Thus the largest possible value of k k is 30 30 , and it is obtained with any one of Φ 3 ( X ) Φ 10 ( X ) \Phi_3(X)\Phi_{10}(X) , Φ 6 ( X ) Φ 5 ( X ) \Phi_6(X)\Phi_5(X) and Φ 6 ( X ) Φ 10 ( X ) \Phi_6(X)\Phi_{10}(X) as minimum polynomial.

It remains to show that a 6 × 6 6\times6 matrix can be found with the desired minimum polynomial. Considering companion matrices, the matrix ( 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 ) \left( \begin{array}{cccccc} 0 &-1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{array} \right) has minimum and characteristic polynomial Φ 6 ( X ) Φ 5 ( X ) \Phi_6(X)\Phi_5(X) , and hence has order 30 30 .

Moderator note:

Oh, wow! Complete analysis of the problem!

Footnote: While all the other mimimum polynomials are achievable in a 6 × 6 6\times6 matrix, the minimum polynomials Φ 5 \Phi_5 , Φ 8 \Phi_8 , Φ 10 \Phi_{10} and Φ 12 \Phi_{12} are not, since the characteristic polynomial would have some quadratic factor in addition, and the roots of that quadratic would give the minimum polynomial a further factor.

In all other cases, each proposed minimum polynomial can be multiplied by one or more of its constituent cyclotomic factors to obtain a polynomial of degree 6 6 , and we could use companion matrices to find a 6 × 6 6\times6 matrix with the desired minimum polynomial.

Mark Hennings - 7 years, 8 months ago

respect

Daniel Wang - 7 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...