The Other AM-GM (Part 2)

Algebra Level 4

Let w , x , y , w, \space x, \space y, and z z be positive real numbers, such that 1 w + 1 x + 1 z = 5 1 y \dfrac{1}{w} + \dfrac{1}{x} + \dfrac{1}{z} = 5 - \dfrac{1}{y} . The minimum value of w 4 x 3 y 2 z w^{4}x^{3}y^{2} z is a form of a b \dfrac{a}{b} , where a a and b b are positive coprime integers. If a b 3 = c d \sqrt[3]{\dfrac{a}{b} } = \dfrac{c}{d} , where c c and d d are coprime positive integers, find b a + d c b-a+d-c .

Note: Should you only use AM-GM?

For more problem maximum and minimum, click here


Try another problem on my set! Let's Practice


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Fidel Simanjuntak
Mar 14, 2017

We can see that 1 w + 1 x + 1 y + 1 z = 5. \dfrac{1}{w} + \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 5.

Applying G M H M GM-HM on 4 w , 4 w , 4 w , 4 w , 3 x , 3 x , 3 x , 2 y , 2 y , z 4w, \space 4w, \space 4w, \space 4w, \space 3x, \space 3x, \space 3x, \space 2y, \space 2y, \space z , we have

256 27 4 w 4 x 3 y 2 z 10 10 1 4 w + 1 4 w + 1 4 w + 1 4 w + 1 3 x + 1 3 x + 1 3 x + 1 2 y + 1 2 y + 1 z 1 w + 1 x + 1 y + 1 y + 1 z = 5 \sqrt[10]{256 \cdot 27 \cdot 4 \cdot w^{4}x^{3} y^{2}z} \ge \dfrac{10}{ \underbrace{ \dfrac{1}{4w} + \dfrac{1}{4w} + \dfrac{1}{4w}+ \dfrac{1}{4w} + \dfrac{1}{3x} + \dfrac{1}{3x} +\dfrac{1}{3x} + \dfrac{1}{2y} + \dfrac{1}{2y} + \dfrac{1}{z} }_{ \dfrac{1}{w} + \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{y} + \dfrac{1}{z} = 5 }}

2 10 27 w 4 y 3 x 2 z 10 10 5 = 2 \implies \sqrt[10]{2^{10} \cdot 27 w^{4}y^{3}x^{2}z} \ge \dfrac{10}{5} \rightarrow = 2

2 10 27 w 4 x 3 y 2 z 2 10 \implies \cancel{2^{10}} \cdot 27 \cdot w^{4}x^{3}y^{2} z \ge \cancel{2^{10}}

w 4 x 3 y 2 z 1 27 w^{4}x^{3}y^{2}z \ge \dfrac{1}{27}

We have a = 1 a = 1 and b = 27 b = 27 .

a b 3 = 1 3 = c d \sqrt[3]{\dfrac{a}{b}} = \dfrac{1}{3} = \dfrac{c}{d}

We have c = 1 c = 1 and d = 3 d = 3 .

Hence, b a + d c = 27 1 + 3 1 = 28 b - a + d - c = 27 -1 + 3 -1 = \boxed{28}

AM GM HM inequality is applicable only on positive integers. How can you apply it on negative numbers?

Yash Jain - 4 years, 2 months ago

Log in to reply

But, once, i read an AM-GM-HM from a website, says that it works for negative numbers too. If it doesnt work for negative numbers, i'll edit the problem. Thank you!

Fidel Simanjuntak - 4 years, 2 months ago

No. It works only for positive real numbers. https://brilliant.org/wiki/arithmetic-mean-geometric-mean

Yash Jain - 4 years, 2 months ago

Log in to reply

Okay, i already edited the problem. I'm sorry for my mistake.

Fidel Simanjuntak - 4 years, 2 months ago

Did the same way

I Gede Arya Raditya Parameswara - 4 years, 2 months ago

Log in to reply

Nice! Are you really 13 years old?! You're an indonesian, right?

Fidel Simanjuntak - 4 years, 2 months ago

Yess I'm 13 years old.. and I'm Indonesia... I never lying @Fidel Simanjuntak (btw kamu Indonesia juga ya orang mana???),,(boleh minta id Line??)

I Gede Arya Raditya Parameswara - 4 years, 2 months ago

Log in to reply

Jakarta. ID LINE : fid_abs

Fidel Simanjuntak - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...