The Other AM-GM (Part 1)

Algebra Level 5

( x + 2 y ) ( y + 2 z ) ( x z + 1 ) \large (x+ 2y)(y+2z)(xz+1)

Positive reals x x , y y , and z z are such that x y z = 1 xyz = 1 . If the value of the expression above is minimum at ( x m , y m , z m ) (x_m, y_m, z_m) and x m + y m + z m = m n x_m+y_m+z_m = \dfrac mn , where m m and n n are coprime positive integers. Find m + n m+n .

For more problem about maximum and minimum, click here


Try another problem on my set! Let's Practice


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By AM-GM, we have x + 2 y 2 2 x y x+ 2y \geq 2\sqrt{2xy} ; y + 2 z 2 2 y z y+2z \geq 2\sqrt{2yz} ; x z + 1 2 x z xz+ 1 \geq 2\sqrt{xz} .

Multiply those three inequalities, we have

( x + 2 y ) ( y + 2 z ) ( x z + 1 ) 8 4 x 2 y 2 z 2 (x+2y)(y+2z)(xz+1) \geq 8\sqrt{4x^2y^2z^2}

( x + 2 y ) ( y + 2 z ) ( x z + 1 ) 16 ( x y z ) 2 = 16 x y z = 16 (x+2y)(y+2z)(xz+1) \geq 16 \sqrt{(xyz)^2} = 16 xyz = 16

So, the minimum value of the given expression ( x + 2 y ) ( y + 2 z ) ( x z + 1 ) (x+2y)(y+2z)(xz+1) is 16 16 , when x = 2 , y = 1 , z = 1 2 x= 2, \space y=1, \space z= \frac{1}{2} .

Then, we have x + y + z = 7 2 = m n x+y+z= \frac{7}{2} = \frac{m}{n} .

Hence, m + n = 9 m+n = \boxed{9} .

( x + 2 y ) ( y + 2 z ) ( x z + 1 ) AM-GM ( 2 2 x y ) ( 2 2 y z ) ( 2 x z ) ( x + 2 y ) ( y + 2 z ) ( x z + 1 ) 16 ( x 2 y 2 z 2 ) = 16 \color{#3D99F6}{(x+2y)}\color{#D61F06}{(y+2z)}\color{#20A900}{(xz+1)} \stackrel{\color{#333333}{\text{AM-GM}}}\geq \color{#3D99F6}{(2\sqrt2\sqrt{xy})}\color{#D61F06}{(2\sqrt2\sqrt{yz})}\color{#20A900}{(2\sqrt{xz})}\\ \implies (x+2y)(y+2z)(xz+1)\geq 16\sqrt{(x^2y^2z^2)}=16

Equality occurs when x = 2 y , y = 2 z , x z = 1 x = 1 z = 4 z x=2y,y=2z,xz=1\implies x=\dfrac{1}{z}=4z ,hence z = 1 2 z=\dfrac{1}{2} from where we get y = 1 , x = 2 y=1,x=2 .Hence x + y + z = 2 + 1 + 1 2 = 7 2 7 + 2 = 9 x+y+z=2+1+\dfrac{1}{2}=\dfrac{7}{2}\implies 7+2=\boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...