In triangle A B C , B C = 2 0 , A C = 1 8 , and ∠ A − ∠ B = 4 5 ∘ . Find the value of ⌊ 1 0 0 0 tan 2 C ⌋ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A − B = 4 5 , we get A = 4 5 + B ⟹ 1
FromBy sine law, we have
2 0 sin A = 1 8 sin B ⟹ sin A = 1 8 2 0 sin B
Substitute 1 in the above, we have
sin ( 4 5 + B ) = 9 1 0 sin B
Use the identity: sin ( θ + ϕ ) = sin θ cos ϕ + cos θ sin ϕ , we have
sin 4 5 cos B + cos 4 5 sin B = 9 1 0 sin B
sin 4 5 cos B = 9 1 0 sin B − cos 4 5 sin B = sin B ( 9 1 0 − cos 4 5 )
Use the identity: tan θ = cos θ sin θ
tan B = 9 1 0 − cos 4 5 sin 4 5
B = tan − 1 ⎣ ⎢ ⎡ 9 1 0 − cos 4 5 sin 4 5 ⎦ ⎥ ⎤ ≈ 6 0 . 2 5 8 5 8 1 4 9
It follows that, A = 4 5 + B ≈ 1 0 5 . 2 5 8 5 8 1 5
Since the sum of the interior angles of a triangle is 1 8 0 , we get, C = 1 8 0 − A − B ≈ 1 4 . 4 8 2 8 3 7 0 1
Finally, the desired answer is ⌊ 1 0 0 0 tan 2 C ⌋ = 1 0 0 0 × tan 2 1 4 . 4 8 2 8 3 7 0 1 = 1 2 7
Problem Loading...
Note Loading...
Set Loading...
By the Law of Tangents ,
tan 2 A + B tan 2 A − B = a + b a − b .
Plugging in the values from the problem, we get
tan 2 A + B tan 2 4 5 ∘ cot 2 C 2 − 1 tan 2 C tan 2 C = 2 0 + 1 8 2 0 − 1 8 = 1 9 1 = 1 9 ( 2 − 1 ) 1 ≈ 0 . 1 2 7 0 …
Thus, ⌊ 1 0 0 0 tan 2 C ⌋ = 1 2 7 .