The (other) Third Law

Geometry Level 3

In triangle A B C , ABC, B C = 20 , BC = 20, A C = 18 , AC = 18, and A B = 4 5 . \angle A - \angle B = 45^{\circ}. Find the value of 1000 tan C 2 . \left \lfloor 1000\tan \dfrac{C} {2} \right \rfloor.


The answer is 127.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Steven Yuan
Feb 24, 2018

By the Law of Tangents ,

tan A B 2 tan A + B 2 = a b a + b . \dfrac{\tan \frac{A - B}{2}}{\tan \frac{A + B}{2}} = \dfrac{a - b}{a + b}.

Plugging in the values from the problem, we get

tan 45 2 tan A + B 2 = 20 18 20 + 18 2 1 cot C 2 = 1 19 tan C 2 = 1 19 ( 2 1 ) tan C 2 0.1270 \begin{aligned} \dfrac{\tan {\frac{45}{2}}^{\circ}}{\tan \frac{A + B}{2}} &= \dfrac{20 - 18}{20 + 18} \\ \dfrac{\sqrt{2} - 1}{\cot \frac{C}{2}} &= \dfrac{1}{19} \\ \tan \dfrac{C}{2} &= \dfrac{1}{19(\sqrt{2} - 1)} \\ \tan \dfrac{C}{2} &\approx 0.1270\dots \end{aligned}

Thus, 1000 tan C 2 = 127 . \left \lfloor 1000 \tan \dfrac{C}{2} \right \rfloor = \boxed{127}.

From A B = 45 A-B=45 , we get A = 45 + B A=45+B \implies 1 \boxed{1}

By sine law, we have

sin A 20 = sin B 18 \dfrac{\sin A}{20}=\dfrac{\sin B}{18} \implies sin A = 20 18 sin B \sin A=\dfrac{20}{18} \sin B

Substitute 1 \boxed{1} in the above, we have

sin ( 45 + B ) = 10 9 sin B \sin (45 + B) = \dfrac{10}{9} \sin B

Use the identity: sin ( θ + ϕ ) = sin θ cos ϕ + cos θ sin ϕ \sin (\theta + \phi)=\sin \theta \cos \phi + \cos \theta \sin \phi , we have

sin 45 cos B + cos 45 sin B = 10 9 sin B \sin 45 \cos B + \cos 45 \sin B = \dfrac{10}{9} \sin B

sin 45 cos B = 10 9 sin B cos 45 sin B = sin B ( 10 9 cos 45 ) \sin 45 \cos B = \dfrac{10}{9} \sin B - \cos 45 \sin B=\sin B \left(\dfrac{10}{9}-\cos 45\right)

Use the identity: tan θ = sin θ cos θ \tan \theta = \dfrac{\sin \theta}{\cos \theta}

tan B = sin 45 10 9 cos 45 \tan B=\dfrac{\sin 45}{\dfrac{10}{9}-\cos 45}

B = tan 1 [ sin 45 10 9 cos 45 ] 60.25858149 B=\tan ^{-1} \left[\dfrac{\sin 45}{\dfrac{10}{9}-\cos 45}\right] \approx 60.25858149

It follows that, A = 45 + B 105.2585815 A=45+B \approx 105.2585815

Since the sum of the interior angles of a triangle is 180 180 , we get, C = 180 A B 14.48283701 C=180-A-B \approx 14.48283701

Finally, the desired answer is 1000 tan C 2 = 1000 × tan 14.48283701 2 = 127 \left\lfloor 1000 \tan \dfrac{C}{2} \right \rfloor = 1000 \times \tan \dfrac{14.48283701}{2}=\large{\boxed{127}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...