The past, present, and future

Algebra Level 4

Given that E = a 3 b 3 c 3 3 a b c a 2 + b 2 + c 2 + a b b c + a c \mathscr{E} = \dfrac{a^3 -b^3 -c^3 - 3abc}{a^2 + b^2 + c^2 + ab - bc + ac}

and a = 2015 , b = 2016 , c = 2017 a = 2015, b = 2016, c = 2017 . Find E \mathscr{E} .


The answer is -2018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 30, 2016

You gotta think positive.

E = a 3 b 3 c 3 3 a b c a 2 + b 2 + c 2 + a b b c + a c Let x = a , y = b , z = c = x 3 + y 3 + z 3 3 x y z x 2 + y 2 + z 2 x y y z z x = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) + 3 x y z 3 x y z x 2 + y 2 + z 2 x y y z z x = x + y + z = a b c = 2015 2016 2017 = 2018 \begin{aligned} \mathscr E & = \frac{a^3 -b^3 -c^3 - 3abc}{a^2 + b^2 + c^2 + ab - bc + ac} \quad \quad \small \color{#3D99F6}{\text{Let }x=a, \ y=-b, \ z = -c} \\ & = \frac{x^3+y^3+z^3 - 3xyz}{x^2+y^2+z^2-xy-yz-zx} \\ & = \frac{(x+y+z)(x^2+y^2+z^2-xy-yz-zx)+3xyz -3xyz}{x^2+y^2+z^2-xy-yz-zx} \\ & = x+y+z \\ & = a-b-c \\ & = 2015-2016-2017 \\ & = \boxed{-2018} \end{aligned}

did you use the identity x 3 + y 3 + z 3 3 x y z x^3+y^3+z^3 -3xyz expansion

abhishek alva - 5 years ago

Log in to reply

I used x 3 + y 3 + z 3 = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) + 3 x y z x^3+y^3+z^3 = (x+y+z)(x^2+y^2+z^2-xy-yz-zx)+3xyz , which is similar.

Chew-Seong Cheong - 5 years ago

Log in to reply

its the same thing

abhishek alva - 5 years ago

Did it the same way sir.+1!

Rishabh Tiwari - 5 years ago

Did the same

Aditya Kumar - 5 years ago

Exactly the same solution. You always have to be on the look out for those types of factorisations.

Sharky Kesa - 5 years ago
Hung Woei Neoh
May 30, 2016

Let b = 2016 = n b=2016=n . Then, c = 2017 = n + 1 , a = 2015 = n 1 c=2017=n+1,\;a=2015=n-1

Therefore,

E = a 3 b 3 c 3 3 a b c a 2 + b 2 + c 2 + a b b c + a c = ( n 1 ) 3 n 3 ( n + 1 ) 3 3 ( n 1 ) ( n ) ( n + 1 ) ( n 1 ) 2 + n 2 + ( n + 1 ) 2 + ( n 1 ) ( n ) ( n ) ( n + 1 ) + ( n 1 ) ( n + 1 ) = n 3 3 n 2 + 3 n 1 n 3 n 3 3 n 2 3 n 1 3 n 3 + 3 n n 2 2 n + 1 + n 2 + n 2 + 2 n + 1 + n 2 n n 2 n + n 2 1 = 4 n 3 6 n 2 + 3 n 2 4 n 2 2 n + 1 = 4 n 3 8 n 2 + 2 n 2 + 4 n n 2 4 n 2 2 n + 1 = 4 n 2 ( n 2 ) 2 n ( n 2 ) + 1 ( n 2 ) 4 n 2 2 n + 1 = ( n 2 ) ( 4 n 2 2 n + 1 ) 4 n 2 2 n + 1 = ( n 2 ) = 2016 2 = 2018 \mathscr{E}\\ =\dfrac{a^3-b^3-c^3-3abc}{a^2+b^2+c^2+ab-bc+ac}\\ =\dfrac{(n-1)^3 - n^3 -(n+1)^3 -3(n-1)(n)(n+1)}{(n-1)^2 + n^2 + (n+1)^2 + (n-1)(n) -(n)(n+1) + (n-1)(n+1)}\\ =\dfrac{\color{#3D99F6}{n^3}\color{#D61F06}{ - 3n^2}\color{#20A900}{+3n}\color{#EC7300}{-1}\color{#3D99F6}{ -n^3 -n^3 }\color{#D61F06}{-3n^2}\color{#20A900}{-3n}\color{#EC7300}{-1}\color{#3D99F6}{-3n^3}\color{#20A900}{+3n}}{\color{#D61F06}{n^2}\color{#20A900}{-2n}\color{#EC7300}{+1}\color{#D61F06}{+n^2+n^2}\color{#20A900}{+2n}\color{#EC7300}{+1}\color{#D61F06}{+n^2}\color{#20A900}{-n}\color{#D61F06}{-n^2}\color{#20A900}{-n}\color{#D61F06}{+n^2}\color{#EC7300}{-1}}\\ =\dfrac{\color{#3D99F6}{-4n^3}\color{#D61F06}{-6n^2}\color{#20A900}{+3n}\color{#EC7300}{-2}}{\color{#D61F06}{4n^2}\color{#20A900}{-2n}\color{#EC7300}{+1}}\\ =\dfrac{\color{#3D99F6}{-4n^3}\color{#D61F06}{-8n^2+2n^2}\color{#20A900}{+4n-n}\color{#EC7300}{-2}}{\color{#D61F06}{4n^2}\color{#20A900}{-2n}\color{#EC7300}{+1}}\\ =\dfrac{4n^2\color{#69047E}{(-n-2)} -2n\color{#69047E}{(-n-2)}+1\color{#69047E}{(-n-2)}}{4n^2-2n+1}\\ =\dfrac{\color{#69047E}{(-n-2)}\color{#624F41}{(4n^2-2n+1)}}{\color{#624F41}{4n^2-2n+1}}\\ =\color{#69047E}{(-n-2)}\\ =-2016-2\\ =\boxed{-2018}

Or use x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx) and put x = a , y = b , z = c x=a,y=-b,z=-c and question is very trivial since denominator gets cancelled after factorising the numerator as above.

RoYal Abhik - 5 years ago

Another interesting way to look at it.

Hobart Pao - 5 years ago
Hobart Pao
May 30, 2016

( a b ) 3 = a 3 3 a 2 b + 3 a b 2 b 3 (a-b)^3 = a^3 - 3a^2 b + 3ab^2 - b^3

Then we can add and subtract 3 a 2 b + 3 a b 2 -3a^2 b+ 3ab^2 .

E = a 3 b 3 c 3 3 a b c + 3 a 2 b 3 a b 2 3 a 2 b + 3 a b 2 a 2 + b 2 + c 2 + a b b c + a c \mathscr{E} = \dfrac{a^3 -b^3 -c^3 - 3abc + 3a^2 b - 3ab^2 - 3a^2 b + 3ab^2 }{a^2 + b^2 + c^2 + ab - bc + ac}

E = ( a b ) 3 c 3 3 a b c + 3 a 2 b 3 a b 2 a 2 + b 2 + c 2 + a b b c + a c \mathscr{E} = \dfrac{(a-b)^3 - c^3 -3abc + 3a^2 b - 3ab^2 }{a^2 + b^2 + c^2 + ab - bc + ac}

E = ( a b ) 3 c 3 + 3 a b ( a b c ) a 2 + b 2 + c 2 + a b b c + a c \mathscr{E} = \dfrac{(a-b)^3 - c^3 + 3ab (a-b-c ) }{a^2 + b^2 + c^2 + ab - bc + ac}

E = ( a b c ) [ ( a b ) 2 + c 2 + c ( a b ) ] + 3 a b ( a b c ) a 2 + b 2 + c 2 + a b b c + a c \mathscr{E} = \dfrac{(a-b-c)[(a-b)^2 + c^2 + c(a-b)] + 3ab (a-b-c ) }{a^2 + b^2 + c^2 + ab - bc + ac}

E = ( a b c ) [ ( a b ) 2 + c 2 + c ( a b ) + 3 a b ] a 2 + b 2 + c 2 + a b b c + a c \mathscr{E} = \dfrac{(a-b-c)[(a-b)^2 + c^2 + c(a-b) + 3ab] }{a^2 + b^2 + c^2 + ab - bc + ac}

E = ( a b c ) [ ( a 2 + b 2 2 a b + c 2 + a c b c + 3 a b ] a 2 + b 2 + c 2 + a b b c + a c \mathscr{E} = \dfrac{(a-b-c)[(a^2 + b^2 - 2ab + c^2 + ac- bc + 3ab] }{a^2 + b^2 + c^2 + ab - bc + ac}

E = ( a b c ) [ ( a 2 + b 2 + c 2 + a b + a c b c ] a 2 + b 2 + c 2 + a b b c + a c \mathscr{E} = \dfrac{(a-b-c)[(a^2 + b^2 + c^2 + ab + ac- bc ] }{a^2 + b^2 + c^2 + ab - bc + ac}

E = a b c \mathscr{E} = a-b-c

Substituting a = 2015 , b = 2016 , c = 2017 a = 2015, b = 2016, c = 2017 , the final answer is 2015 2016 2017 = 2018 2015 - 2016 - 2017 = \boxed{-2018}

Nice question & a nice sol.+1 !

Rishabh Tiwari - 5 years ago

Log in to reply

Thanks for the encouragement!

Hobart Pao - 5 years ago

Too tedious. Could be easily done using x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx) . BTW, upvoted.

Rishik Jain - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...