Given that E = a 2 + b 2 + c 2 + a b − b c + a c a 3 − b 3 − c 3 − 3 a b c
and a = 2 0 1 5 , b = 2 0 1 6 , c = 2 0 1 7 . Find E .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
did you use the identity x 3 + y 3 + z 3 − 3 x y z expansion
Log in to reply
I used x 3 + y 3 + z 3 = ( x + y + z ) ( x 2 + y 2 + z 2 − x y − y z − z x ) + 3 x y z , which is similar.
Did it the same way sir.+1!
Did the same
Exactly the same solution. You always have to be on the look out for those types of factorisations.
Let b = 2 0 1 6 = n . Then, c = 2 0 1 7 = n + 1 , a = 2 0 1 5 = n − 1
Therefore,
E = a 2 + b 2 + c 2 + a b − b c + a c a 3 − b 3 − c 3 − 3 a b c = ( n − 1 ) 2 + n 2 + ( n + 1 ) 2 + ( n − 1 ) ( n ) − ( n ) ( n + 1 ) + ( n − 1 ) ( n + 1 ) ( n − 1 ) 3 − n 3 − ( n + 1 ) 3 − 3 ( n − 1 ) ( n ) ( n + 1 ) = n 2 − 2 n + 1 + n 2 + n 2 + 2 n + 1 + n 2 − n − n 2 − n + n 2 − 1 n 3 − 3 n 2 + 3 n − 1 − n 3 − n 3 − 3 n 2 − 3 n − 1 − 3 n 3 + 3 n = 4 n 2 − 2 n + 1 − 4 n 3 − 6 n 2 + 3 n − 2 = 4 n 2 − 2 n + 1 − 4 n 3 − 8 n 2 + 2 n 2 + 4 n − n − 2 = 4 n 2 − 2 n + 1 4 n 2 ( − n − 2 ) − 2 n ( − n − 2 ) + 1 ( − n − 2 ) = 4 n 2 − 2 n + 1 ( − n − 2 ) ( 4 n 2 − 2 n + 1 ) = ( − n − 2 ) = − 2 0 1 6 − 2 = − 2 0 1 8
Or use x 3 + y 3 + z 3 − 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 − x y − y z − z x ) and put x = a , y = − b , z = − c and question is very trivial since denominator gets cancelled after factorising the numerator as above.
Another interesting way to look at it.
( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3
Then we can add and subtract − 3 a 2 b + 3 a b 2 .
E = a 2 + b 2 + c 2 + a b − b c + a c a 3 − b 3 − c 3 − 3 a b c + 3 a 2 b − 3 a b 2 − 3 a 2 b + 3 a b 2
E = a 2 + b 2 + c 2 + a b − b c + a c ( a − b ) 3 − c 3 − 3 a b c + 3 a 2 b − 3 a b 2
E = a 2 + b 2 + c 2 + a b − b c + a c ( a − b ) 3 − c 3 + 3 a b ( a − b − c )
E = a 2 + b 2 + c 2 + a b − b c + a c ( a − b − c ) [ ( a − b ) 2 + c 2 + c ( a − b ) ] + 3 a b ( a − b − c )
E = a 2 + b 2 + c 2 + a b − b c + a c ( a − b − c ) [ ( a − b ) 2 + c 2 + c ( a − b ) + 3 a b ]
E = a 2 + b 2 + c 2 + a b − b c + a c ( a − b − c ) [ ( a 2 + b 2 − 2 a b + c 2 + a c − b c + 3 a b ]
E = a 2 + b 2 + c 2 + a b − b c + a c ( a − b − c ) [ ( a 2 + b 2 + c 2 + a b + a c − b c ]
E = a − b − c
Substituting a = 2 0 1 5 , b = 2 0 1 6 , c = 2 0 1 7 , the final answer is 2 0 1 5 − 2 0 1 6 − 2 0 1 7 = − 2 0 1 8
Nice question & a nice sol.+1 !
Too tedious. Could be easily done using x 3 + y 3 + z 3 − 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 − x y − y z − z x ) . BTW, upvoted.
Problem Loading...
Note Loading...
Set Loading...
You gotta think positive.
E = a 2 + b 2 + c 2 + a b − b c + a c a 3 − b 3 − c 3 − 3 a b c Let x = a , y = − b , z = − c = x 2 + y 2 + z 2 − x y − y z − z x x 3 + y 3 + z 3 − 3 x y z = x 2 + y 2 + z 2 − x y − y z − z x ( x + y + z ) ( x 2 + y 2 + z 2 − x y − y z − z x ) + 3 x y z − 3 x y z = x + y + z = a − b − c = 2 0 1 5 − 2 0 1 6 − 2 0 1 7 = − 2 0 1 8