The Planck Mass

Which of the following is the correct formula for the Planck mass, the unique mass scale determined by combinations of powers of only G G , c c , and \hbar ?

G c 5 \sqrt{\frac{G \hbar}{c^5}} G c \sqrt{\frac{Gc}{\hbar}} c G \sqrt{\frac{\hbar c}{G}} G c 2 3 \sqrt{\frac{G c^2}{\hbar^3}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 17, 2016

Let the Planck mass be:

m p = G α c β γ [ m p ] = [ G ] α [ c ] β [ ] γ M = [ L 3 M T 2 ] α [ L T ] β [ M L 2 T ] γ M = M α + γ L 3 α + β + 2 γ T 2 α β γ \begin{aligned} m_p & = G^\alpha c^\beta \hbar^\gamma \\ \left[ m_p \right] & = \left[G\right]^\alpha \left[c\right]^\beta \left[\hbar\right]^\gamma \\ M & = \left[\frac {L^3}{MT^2} \right]^\alpha \left[\frac LT \right]^\beta \left[\frac {ML^2}T \right]^\gamma \\ M & = M^{-\alpha + \gamma} L^{3\alpha + \beta + 2\gamma} T^{-2\alpha - \beta - \gamma} \end{aligned}

{ α + γ = 1 3 α + β + 2 γ = 0 2 α β γ = 0 \implies \begin{cases} -\alpha + \gamma & = 1 \\ 3\alpha + \beta + 2\gamma & = 0 \\ -2\alpha - \beta - \gamma & = 0 \end{cases}

( α β γ ) = ( 1 0 1 3 1 2 2 1 1 ) 1 ( 1 0 0 ) = 1 2 ( 1 1 1 ) \implies \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 \\ 3 & 1 & 2 \\ -2 & -1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \dfrac 12 \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}

m p = c G \implies m_p = \boxed{\sqrt{\dfrac {c \hbar}G}}

Matt DeCross
Jan 23, 2016

Verifying that the answer above does indeed have units of mass: [ ] 1 / 2 [ c ] 1 / 2 [ G ] 1 / 2 = M 1 / 2 L T 1 / 2 L 1 / 2 T 1 / 2 M 1 / 2 T L 3 / 2 = M . [\hbar]^{1/2}[c]^{1/2}[G]^{-1/2} = M^{1/2} L T^{-1/2} L^{1/2} T^{-1/2} M^{1/2} T L^{-3/2} = M.

This can be solved for directly using the method on the String Theory wiki.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...