An algebra problem by Nutan Sinha

Algebra Level 5

{ a + b + c = 1 a b + a c + b c = 2 a b c = 3 \begin{cases}\begin{aligned} a+b+c&=1 \\ ab+ac + bc &= 2 \\ abc &= 3 \end{aligned}\end{cases}

Let a a , b b , and c c be numbers satisfying the system of equations above.

Evaluate 1 a + b c + 1 b + a c + 1 c + a b . \dfrac1{a+bc} + \dfrac1{b+ac} + \dfrac1{c+ab}.

-2 -1 0 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 21, 2018

Given that { a + b + c = 1 a b + b c + c a = 2 a b c = 3 \begin{cases} a+b+c = 1 \\ ab+bc+ca = 2 \\ abc = 3 \end{cases} , then by Vieta's formula , a a , b b , and c c are roots of x 3 x 2 + 2 x 3 = 0 x^3-x^2+2x-3=0 . This means that { a 3 a 2 + 2 a 3 = 0 b 3 b 2 + 2 b 3 = 0 c 3 c 2 + 2 c 3 = 0 \begin{cases} a^3-a^2+2a-3=0 \\ b^3-b^2+2b-3=0 \\ c^3-c^2+2c-3=0 \end{cases} . Now consider

S = c y c 1 a + b c Multiply up and down by a = c y c a a 2 + a b c Note that a b c = 3 = c y c a a 2 + 3 From a 3 a 2 + 2 a 3 = 0 a 3 + 2 a = a 2 + 3 = c y c a a 3 + 2 a = c y c 1 a 2 + 2 From a 3 + 2 a = a 2 + 3 a ( a 2 + 2 ) = a 2 + 2 + 1 = c y c ( a 1 ) a = 1 + 1 a 2 + 2 = a 1 + b 1 + c 1 Note that a + b + c = 1 = 1 3 = 2 \begin{aligned} S & = \sum_{cyc} \frac 1{a+bc} & \small \color{#3D99F6} \text{Multiply up and down by }a \\ & = \sum_{cyc} \frac a{a^2+\color{#3D99F6} abc} & \small \color{#3D99F6} \text{Note that }abc = 3 \\ & = \sum_{cyc} \frac a{a^2+\color{#3D99F6} 3} & \small \color{#3D99F6} \text{From } a^3-a^2+2a-3=0 \implies a^3+2a = a^2+3 \\ & = \sum_{cyc} \frac a{a^3+2a} \\ & = \sum_{cyc} \frac 1{a^2+2} & \small \color{#3D99F6} \text{From } a^3+2a = a^2+3 \implies a(a^2+2) = a^2+2+1 \\ & = \sum_{cyc} (a-1) & \small \color{#3D99F6} \implies a = 1+\frac 1{a^2+2} \\ & = a -1 +b-1+c-1 & \small \color{#3D99F6} \text{Note that }a+b+c = 1 \\ & = 1 -3 = \boxed{-2} \end{aligned}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...