The polynomial question!!

Algebra Level 2

Polynomial p ( n ) p(n) , where n n is a natural number, is such that p ( n ) = p ( n + 1 ) p(n)=p(n+1) and p ( 2020 ) = 2020 p(2020)=2020 .

Find p ( 202 0 2020 ) p\left(2020^{2020} \right) .


The answer is 2020.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

p ( x ) = p ( x + 1 ) p(x)=p(x+1)

\Rightarrow p ( 1 ) = p ( 1 + 1 ) p(1)=p(1+1)

\Rightarrow p ( 1 ) = p ( 2 ) p(1)=p(2)

Similarly, p ( 2 ) = p ( 3 ) p(2)=p(3)

p ( 3 ) = p ( 4 ) p(3)=p(4)

      .

      .

      .

\Rightarrow p ( 1 ) = p ( 2 ) = p ( 3 ) = . . . . . . . . = p ( 2020 ) . . . . . . . . . . = p ( 202 0 2020 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = 2020 p(1)=p(2)=p(3)=........=p(2020)..........=p(2020^{2020})..............................=2020

\Rightarrow p ( 202 0 2020 ) = 2020 p(2020^{2020})=2020

Zakir Husain
Jul 1, 2020

2020 = p ( 2020 ) = p ( 2020 + 1 ) = p ( 2020 + 1 + 1 ) = p ( 2020 + 1 + 1 + 1 ) . . . = p ( 202 0 2020 ) 2020=p(2020)=p(2020+1)=p(2020+1+1)=p(2020+1+1+1)...=p(2020^{2020}) p ( 202 0 2020 ) = 2020 \Rightarrow p(2020^{2020})=2020

You are my first solver.

A Former Brilliant Member - 11 months, 2 weeks ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...