the positive numbers

Algebra Level 2

Positive reals a a , b b , and c c ar such that a + b + c = 1 a+b+c=1 . Find the minimum value of

1 a + 1 b + 1 c \frac 1a + \frac 1b + \frac 1c


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Using Hölder's inequality , we have:

( 1 a + 1 b + 1 c ) ( a + b + c ) ( 1 + 1 + 1 ) ( 1 + 1 + 1 ) 3 ( 1 a + 1 b + 1 c ) ( 1 ) ( 3 ) 27 1 a + 1 b + 1 c 9 \begin{aligned} \left(\frac 1a + \frac 1b + \frac 1c \right)(a+b+c)(1+1+1) & \ge (1+1+1)^3 \\ \left(\frac 1a + \frac 1b + \frac 1c \right)(1)(3) & \ge 27 \\ \implies \frac 1a + \frac 1b + \frac 1c & \ge \boxed 9 \end{aligned}

Equality occurs when a = b = c = 1 3 a=b=c = \frac 13 .

A. M. -H. M. Inequality :

( a + b + c ) ( 1 a + 1 b + 1 c ) 9 (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq 9

1 a + 1 b + 1 c 9 \implies \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \boxed 9 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...