The Power of Absolute

Algebra Level 5

3 ( 9 + 3 x + x + 4 ) = 3 x + 4 + 3 x + 4 \large3\left(9+3^{|x|+|x+4|}\right)=3^{|x+4|}+3^{|x|+4}

Find the sum of all values of x x satisfying the above equation


The answer is -8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let f ( x ) = 3 ( 9 + 3 x + x + 4 ) 3 x + 4 3 x + 4 = 0 \begin{aligned} f(x) = 3\left(9+3^{|x|+|x+4|}\right) - 3^{|x+4|} - 3^{|x|+4} = 0 \end{aligned} , We have to consider 3 3 cases when f ( x ) f(x) changes form.

Case 1: x > 0 \underline{\text{Case 1:}} \quad x > 0

3 ( 9 + 3 x + x + 4 ) 3 x + 4 3 x + 4 = 0 3 3 + 3 5 ( 3 x ) 2 2 ˙ 3 4 ( 3 x ) = 0 9 ( 3 x ) 2 6 ( 3 x ) + 1 = 0 ( 3 ( 3 x ) 1 ) 2 = 0 3 x = 1 3 x = 1 < 0 rejected \begin{aligned} 3\left(9+3^{x+x+4}\right) - 3^{x+4} - 3^{x+4} & = 0 \\ 3^3 + 3^5 (3^x)^2 - 2\dot{}3^4(3^x) & = 0 \\ 9(3^x)^2 - 6(3^x) + 1 & = 0 \\ \left(3(3^x) -1\right)^2 & = 0 \\ 3^x & = \frac{1}{3} \\ \Rightarrow x & = \color{#D61F06}{-1< 0 \quad \text{rejected}} \end{aligned}

Case 2: 4 < x 0 \underline{\text{Case 2:}} \quad -4 < x \le 0

3 ( 9 + 3 x + x + 4 ) 3 x + 4 3 x + 4 = 0 3 3 + 3 5 3 4 ( 3 x ) 3 4 ( 3 x ) = 0 3 ( 3 x ) 2 10 ( 3 x ) + 3 = 0 ( 3 ( 3 x ) 1 ) ( ( 3 x ) 3 ) = 0 3 x = { 1 3 x = 1 ( 4 , 0 ] accepted 3 x = 1 > 0 rejected \begin{aligned} 3\left(9+3^{-x+x+4}\right) - 3^{x+4} - 3^{-x+4} & = 0 \\ 3^3 + 3^5 - 3^4(3^x) - 3^4(3^{-x}) & = 0 \\ 3(3^x)^2 - 10(3^x) + 3 & = 0 \\ (3(3^x) -1) ((3^x) -3) & = 0 \\ 3^x & = \begin{cases} \frac{1}{3} & \Rightarrow x = \color{#3D99F6}{-1 \in (-4, 0]} & \color{#3D99F6}{\text{accepted}} \\ 3 & \Rightarrow x = \color{#D61F06}{1 > 0} & \color{#D61F06} {\text{rejected}} \end{cases} \end{aligned}

Case 2: x 4 \underline{\text{Case 2:}} \quad x \le -4

3 ( 9 + 3 x x 4 ) 3 x 4 3 x + 4 = 0 3 3 + 3 3 ( 3 x ) 2 3 4 ( 3 x ) 3 4 ( 3 x ) = 0 3 ( 3 x ) 2 6562 ( 3 x ) + 2187 = 0 ( 3 ( 3 x ) 1 ) ( ( 3 x ) 2187 ) = 0 3 x = { 1 3 x = 1 > 4 rejected 3 7 x = 7 < 4 accepted \begin{aligned} 3\left(9+3^{-x-x-4}\right) - 3^{-x-4} - 3^{-x+4} & = 0 \\ 3^3 + 3^{-3}(3^{-x})^2 - 3^{-4}(3^{-x}) - 3^4(3^{-x}) & = 0 \\ 3(3^{-x})^2 -6562(3^{-x}) + 2187 & = 0 \\ (3(3^{-x}) -1) ((3^{-x}) -2187) & = 0 \\ 3^{-x} & = \begin{cases} \frac{1}{3} & \Rightarrow x = \color{#D61F06}{1 > -4} & \color{#D61F06}{\text{rejected}} \\ 3^7 & \Rightarrow x = \color{#3D99F6}{-7 < -4} & \color{#3D99F6} {\text{accepted}} \end{cases} \end{aligned}

Therefore the sum of solutions is 1 7 = 8 -1-7 = \boxed{-8}

Shreyash Rai
Mar 6, 2016

3 ( 9 + 3 I x I + I x + 4 I ) = 3 I x + 4 I + 3 I x I + 4 27 + 3 I x I + I x + 4 I + 1 = 3 I x + 4 I + 3 I x I + 1 . 27 3 I x I + 1 ( 3 I x + 4 I 27 ) = 3 I x + 4 I 27 n o w t h e r e a r e t w o w a y s i n w h i c h t h i s e q u a t i o n w o u l d s a t i s f y c a s e 1 3 I x I + 1 = 1 I x I + 1 = 0 I x I = 1 w h i c h i s n o t p o s s i b l e s i n c e a b s o l u t e v a l u e o f a n y n u m b e r i s a l w a y s p o s i t i v e . s o t h i s c a s e i s n o t p o s s i b l e . c a s e 2 3 I x + 4 I 27 = 0 3 I x + 4 I = 3 3 I x + 4 I = 3 w h i c h y e i l d s t w o s o l u t i o n s x = 1 , 7 s i n c e n o o t h e r c a s e i s p o s s i b l e . t h e s e w i l l b e t h e o n l y t w o s o l u t i o n s . s o t h e f i n a l a n s w e r , i . e t h e i r s u m w o u l d b e 1 + 7 = 8 3(9+{ 3 }^{ IxI\quad +\quad Ix+4I })\quad =\quad { 3 }^{ Ix+4I }+\quad { 3 }^{ IxI+4 }\quad \\ \Longrightarrow \quad 27\quad +\quad { 3 }^{ IxI + Ix+4I + 1 }=\quad { 3 }^{ Ix+4I }+{ 3 }^{ IxI +1 }.27\\ \Longrightarrow { 3 }^{ IxI+1 }({ 3 }^{ Ix+4I }-27)\quad =\quad { 3 }^{ Ix+4I }-27\\ now\quad there\quad are\quad two\quad ways\quad in\quad which\quad this\quad equation\quad would\quad satisfy\\ case1-\\ { 3 }^{ IxI+1 }=1\\ \Longrightarrow IxI\quad +\quad 1\quad =\quad 0\\ \Longrightarrow IxI=-1\\ which\quad is\quad not\quad possible\quad since\quad absolute\quad value\quad of\quad any\quad number\quad is\quad \\ always\quad positive.\quad so\quad this\quad case\quad is\quad not\quad possible.\\ case2-\\ { 3 }^{ Ix+4I }-27=0\\ \Longrightarrow { 3 }^{ Ix+4I }={ 3 }^{ 3 }\\ \Longrightarrow Ix+4I=3\\ which\quad yeilds\quad two\quad solutions\quad \\ x=-1,-7\\ since\quad no\quad other\quad case\quad is\quad possible.\quad these\quad will\quad be\quad the\quad only\quad two\quad solutions.\\ so\quad the\quad final\quad answer,\quad i.e\quad their\quad sum\quad would\quad be\quad -1\quad +\quad -7\quad =\quad -8\\ \\ \\ \quad

Aditya Dhawan
May 8, 2016

L e t a = 3 x a n d b = 3 x + 4 3 ( 9 + a b ) = b + 81 a 27 b = 3 a ( 27 b ) a = 1 3 o r b = 27 N o w a = 1 3 3 x = 3 1 x = 1 w h i c h i s i m p o s s i b l e a s x 0 x T h u s b = 27 3 x + 4 = 3 3 x + 4 = 3 , x + 4 = ± 3 x = 7 o r 1 T h u s t h e s u m o f a l l r e a l s o l u t i o n s = 1 + 7 = 8 Let\quad a={ 3 }^{ \left| x \right| }\quad and\quad b={ 3 }^{ \left| x+4 \right| }\\ \Rightarrow 3(9+ab)=b+81a\\ \Rightarrow 27-b=3a(27-b)\\ \therefore a=\frac { 1 }{ 3 } \quad or\quad b=27\\ Now\quad a=\frac { 1 }{ 3 } \Rightarrow { 3 }^{ \left| x \right| }={ 3 }^{ -1 }\Rightarrow \left| x \right| =-1\quad which\quad is\quad impossible\quad as\quad \left| x \right| \ge 0\quad \forall x\\ Thus\quad b=27\Rightarrow { 3 }^{ \left| x+4 \right| }={ 3 }^{ 3 }\Rightarrow \left| x+4 \right| =3,\quad \therefore x+4=\pm 3\Rightarrow x=-7\quad or\quad -1\\ Thus\quad the\quad sum\quad of\quad all\quad real\quad solutions=\quad -1+-7=\boxed { -8 } \\ \\ \\

@Aditya Dhawan I've converted your comment into a solution.

Calvin Lin Staff - 5 years, 1 month ago

Log in to reply

Thank you sir!

Aditya Dhawan - 5 years, 1 month ago

That was awesomely simple

Nanooji kailash - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...