Power of e

Calculus Level 5

I ( r , n ) = 0 x r e n x d x \displaystyle I(r,n)=\int _{ -\infty }^{ 0 }{ { x }^{ r }{ e }^{ nx } \text{ d}x } where r , n Z r,n \in \mathbb{Z} .

X = n = 1 r = 0 1 I ( r , n ) \displaystyle X= \sum_{n=1}^{\infty } \sum_{r=0}^{\infty } \frac{1}{I(r,n)}

Find 10 4 X \left\lfloor { 10 }^{ 4 }X \right\rfloor

This is part of my set Powers of the ordinary .


The answer is 9206.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

J 0 = 0 x 0 e n x d x = 1 n d e f i n e J r = d J r 1 d n d J 0 d n = J 1 = 0 x e n x d x = 1 n 2 d J 1 d n = J 2 = 0 x 2 e n x d x = 2 n 3 { J }_{ 0 }=\int _{ -\infty }^{ 0 }{ { { x }^{ 0 }e }^{ nx }\quad dx } =\frac { 1 }{ n } \\ define\quad { J }_{ r }=\frac { d{ J }_{ r-1 } }{ dn } \\ \\ \frac { d{ J }_{ 0 } }{ dn } ={ J }_{ 1 }=\int _{ -\infty }^{ 0 }{ x{ e }^{ nx }\quad dx } =\quad \frac { -1 }{ { n }^{ 2 } } \\ \frac { d{ J }_{ 1 } }{ dn } ={ J }_{ 2 }=\int _{ -\infty }^{ 0 }{ { x }^{ 2 }{ e }^{ nx }\quad dx } =\quad \frac { 2 }{ { n }^{ 3 } } \\

What we are doing here is differentiating the integral with respect to n n . Since we are differentiating with respect to n n , we can treat x x as a constant. And hence it can be seen that the r t h r^{th} derivative of J 0 {J}_{0} will contain r t h r^{th} power of x x inside the integral.

d J r 1 d n = J r = 0 x r e n x d x = ( 1 ) r r ! n r + 1 J r = I ( r , n ) = ( 1 ) r r ! n r + 1 ( I ( r , n ) ) 1 = ( 1 ) r n r + 1 r ! r = 0 ( I ( r , n ) ) 1 = n e n n = 1 r = 0 ( I ( r , n ) ) 1 = X = 1 e + 2 e 2 + 3 e 3 + 4 e 4 + . . . X = 1 e + 2 e 2 + 3 e 3 + 4 e 4 + . . . X e = 1 e 2 + 2 e 3 + 3 e 4 + . . . X ( 1 1 e ) = 1 e + 1 e 2 + 1 e 3 + 1 e 4 + . . . = 1 e 1 X = e ( e 1 ) 2 = 0.92067 10 4 X = 9206 \\ \Rightarrow \frac { d{ J }_{ r-1 } }{ dn } ={ J }_{ r }=\int _{ -\infty }^{ 0 }{ { x }^{ r }{ e }^{ nx }\quad dx } =\quad \frac { { (-1) }^{ r }r! }{ { n }^{ r+1 } } \\ { \Rightarrow J }_{ r }=I(r,n)=\frac { { (-1) }^{ r }r! }{ { n }^{ r+1 } } \\ \Rightarrow { (I(r,n)) }^{ -1 }=\frac { { { (-1) }^{ r }n }^{ r+1 } }{ r! } \\ \Rightarrow \sum _{ r=0 }^{ \infty }{ { (I(r,n)) }^{ -1 } } =\quad { ne }^{ -n }\\ \Rightarrow \sum _{ n=1 }^{ \infty }{ \sum _{ r=0 }^{ \infty }{ { (I(r,n)) }^{ -1 } } } =\quad X\quad =\quad \frac { 1 }{ e } +\frac { 2 }{ { e }^{ 2 } } +\frac { 3 }{ { e }^{ 3 } } +\frac { 4 }{ { e }^{ 4 } } +...\\ \quad X=\frac { 1 }{ e } +\frac { 2 }{ { e }^{ 2 } } +\frac { 3 }{ { e }^{ 3 } } +\frac { 4 }{ { e }^{ 4 } } +...\\ \frac { X }{ e } =\quad \quad \quad \frac { 1 }{ { e }^{ 2 } } +\frac { 2 }{ { e }^{ 3 } } +\frac { 3 }{ { e }^{ 4 } } +...\\ \Rightarrow X(1-\frac { 1 }{ e } )=\frac { 1 }{ e } +\frac { 1 }{ { e }^{ 2 } } +\frac { 1 }{ { e }^{ 3 } } +\frac { 1 }{ { e }^{ 4 } } +...=\quad \frac { 1 }{ e-1 } \\ \Rightarrow X=\frac { { e } }{ { (e-1) }^{ 2 } } =0.92067\\ \Rightarrow \left\lfloor { 10 }^{ 4 }X \right\rfloor =\boxed { 9206 }

Hi Raghav, can you suggest any method on identifying how to start solving these types of questions . It took me quite some time before I actually solved it .

Thanks for the same :)

A Former Brilliant Member - 6 years, 3 months ago

Log in to reply

Hmm... Maybe we could start by expressing the given entity in terms of the parameters of the summation. That is, we usually begin by finding the general expression for the r t h r^{th} term and then summing it.

Raghav Vaidyanathan - 6 years, 3 months ago

Log in to reply

Thanks Raghav :)

A Former Brilliant Member - 6 years, 3 months ago

Please justify the change in the order of summation signs. This is not an absolutely convergent sequence, so you cannot just interchange them.

Also, can you justify why d J r 1 d n = J r \frac{ d J_{r-1} } { dn } = J_r ? Note that you are pushing the differential through the integral, hence that step requires slight justification.

Calvin Lin Staff - 6 years, 3 months ago

Log in to reply

Try this question about interchanging the order of summation.

Calvin Lin Staff - 6 years, 3 months ago
Kartik Sharma
Feb 23, 2015

Well, Raghav's solution is interesting but here is mine just for diversity.

I ( r , n ) = 0 x r e n x d x = 0 x r e n x d x \displaystyle I(r,n) = \int_{-\infty}^{0}{{x}^{r}{e}^{nx} dx} = -\int_{0}^{\infty}{{x}^{r}{e}^{nx} dx}

Substitute n x = u x = u n d u n = d x \displaystyle nx = -u \Rightarrow x = \frac{-u}{n} \Rightarrow \frac{-du}{n} = dx

= 0 ( 1 ) r u r n r e u d u n \displaystyle = -\int_{0}^{\infty}{\frac{{(-1)}^{r}{u}^{r}}{{n}^{r}}{e}^{-u}\frac{-du}{n}}

= ( 1 ) r n r + 1 0 u r e u d u \displaystyle = \frac{{(-1)}^{r}}{{n}^{r+1}}\int_{0}^{\infty}{{u}^{r}{e}^{-u} du}

= ( 1 ) r n r + 1 Γ ( r + 1 ) \displaystyle = \frac{{(-1)}^{r}}{{n}^{r+1}}*\Gamma(r+1)

1 I ( r . n ) = n ( n ) r r ! \displaystyle \frac{1}{I(r.n)} = n\frac{{(-n)}^{r}}{r!}

n = 1 n r = 0 ( n ) r r ! \displaystyle \sum_{n=1}^{\infty}{n}\sum_{r=0}^{\infty}{\frac{{(-n)}^{r}}{r!}}

Well, the sum is quite easy as we can see that the first sum is just equal to e n {e}^{-n} . Then the final sum becomes -

n = 1 n e n \displaystyle \sum_{n=1}^{\infty}{n{e}^{-n}}

This can be solved easily by considering this base sum - 1 + x + x 2 + . . . = 1 1 x \displaystyle 1 + x + {x}^{2} +... = \frac{1}{1-x} (first differentiating this, then multiplying it by x x and then substituting x = e x = e .

Therefore, we get the final answer as -

e ( e 1 ) 2 \displaystyle \frac{e}{{(e-1)}^{2}}

Chew-Seong Cheong
Oct 26, 2016

I ( r , n ) = 0 x r e n x d x Let t = n x , x = t n , d x = 1 n d t = 0 ( t n ) r e t ( 1 n ) d t = ( 1 ) r Γ ( r + 1 ) n r + 1 Γ ( ) is Gamma function = ( 1 ) r n ! n r + 1 \begin{aligned} I(r,n) & = \int_{-\infty}^0 x^r e^{nx} dx & \small {\color{#3D99F6}\text{Let }-t = nx, \ x = -\frac tn, \ dx = -\frac 1n \ dt} \\ & = \int_\infty ^0 \left(-\frac tn \right)^r e^{-t} \left(-\frac 1n\right) dt \\ & = \frac {(-1)^r {\color{#3D99F6}\Gamma (r+1)}}{n^{r+1}} & \small {\color{#3D99F6}\Gamma(\cdot) \text{ is Gamma function}} \\ & = \frac {(-1)^r n!}{n^{r+1}} \end{aligned}

Therefore, we have:

X = n = 1 r = 0 1 I ( r , n ) = n = 1 r = 0 ( 1 ) r n r + 1 n ! = n = 1 n r = 0 ( 1 ) r n r n ! = n = 1 n e n Note that n = 1 n e n = n = 0 e n = n = 0 n + 1 e n + 1 = 1 e n = 0 n e n + 1 e n = 0 1 e n = X e + 1 e ( 1 1 1 e ) ( 1 1 e ) X = 1 e ( e e 1 ) X = e ( e 1 ) 2 0.920673594 \begin{aligned} X & = \sum_{n=1}^\infty \sum_{r=0}^\infty \frac 1{I(r,n)} \\ & = \sum_{n=1}^\infty \sum_{r=0}^\infty \frac {(-1)^r n^{r+1}}{n!} \\ & = \sum_{n=1}^\infty n \sum_{r=0}^\infty \frac {(-1)^r n^r}{n!} \\ & = \sum_{n=1}^\infty n e^{-n} & \small {\color{#3D99F6} \text{Note that } \sum_{n=1} ^\infty n e^{-n}= \sum_{n=0}^\infty e^{-n}} \\ & = \sum_{\color{#3D99F6}n=0}^\infty \frac {\color{#3D99F6}n+1}{e^{\color{#3D99F6}n+1}} \\ & = \frac 1e {\color{#3D99F6} \sum_{n=0}^\infty \frac n{e^n}} + \frac 1e \sum_{n=0}^\infty \frac 1{e^n} \\ & = \frac {\color{#3D99F6} X}e + \frac 1e \left(\frac 1{1-\frac 1e} \right) \\ \left(1-\frac 1e \right) X & = \frac 1e \left(\frac e{e-1} \right) \\ \implies X & = \frac e{(e-1)^2} \approx 0.920673594 \end{aligned}

1 0 4 X = 9206 \implies \left \lfloor 10^4X \right \rfloor = \boxed{9206}

Incredible Mind
Mar 5, 2015

gamma function ,

then taylor series if e,

then diff w.r.t x of sum e^(-x)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...