( 2 x ) lo g x = 8 lo g 1 6
Find the product of all values of x satisfying the above equation.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yupz exactly the same way, ;)
( 2 x ) lo g x = 2 lo g x ⋅ x lo g x = x lo g x = lo g x lo g x = ( lo g x ) ( lo g x ) = lo g 2 x + lo g x ⋅ lo g 2 − 1 2 lo g 2 2 = ( lo g x + 4 lo g 2 ) ( lo g x − 3 lo g 2 ) = lo g x = x = 8 lo g 1 6 ( 2 3 ) 4 lo g 2 2 lo g x 2 1 2 lo g 2 lo g 2 1 2 lo g 2 − lo g x ( 1 2 lo g 2 − lo g x ) ( lo g 2 ) 0 0 lo g 2 − 4 , lo g 2 3 1 6 1 , 8
Thus, the product of all solutions is 1 6 1 × 8 = 2 1 = 0 . 5
Problem Loading...
Note Loading...
Set Loading...
( 2 x ) lo g x = 8 lo g 1 6 lo g ( 2 x ) lo g x = lo g 8 lo g 1 6 ( lo g x ) ( lo g 2 + lo g x ) = ( lo g 1 6 ) ( lo g 8 ) ( lo g x ) 2 + ( lo g 2 ) ( lo g x ) − ( lo g 2 4 ) ( lo g 2 3 ) = 0 ( lo g x ) 2 + ( lo g 2 ) ( lo g x ) − ( 4 lo g 2 ) ( 3 lo g 2 ) = 0 ( lo g x + 4 lo g 2 ) ( lo g x − 3 lo g 2 ) = 0 lo g x = − 4 lo g 2 , 3 lo g 2 lo g x = lo g 2 − 4 , lo g 2 3 x = 2 − 4 , 2 3 x = 1 6 1 , 8
Therefore, the product of the solutions = 1 6 1 × 8 = 2 1 = 0 . 5