The Power of Logarithms

Algebra Level 4

( 2 x ) log x = 8 log 16 \large(2x)^{\log x}=8^{\log16}

Find the product of all values of x x satisfying the above equation.


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hung Woei Neoh
May 11, 2016

( 2 x ) log x = 8 log 16 log ( 2 x ) log x = log 8 log 16 ( log x ) ( log 2 + log x ) = ( log 16 ) ( log 8 ) ( log x ) 2 + ( log 2 ) ( log x ) ( log 2 4 ) ( log 2 3 ) = 0 ( log x ) 2 + ( log 2 ) ( log x ) ( 4 log 2 ) ( 3 log 2 ) = 0 ( log x + 4 log 2 ) ( log x 3 log 2 ) = 0 log x = 4 log 2 , 3 log 2 log x = log 2 4 , log 2 3 x = 2 4 , 2 3 x = 1 16 , 8 (2x)^{\log x} = 8^{\log 16}\\ \log (2x)^{\log x} = \log 8^{\log 16}\\ (\log x)(\log 2 + \log x) = (\log 16)(\log 8)\\ (\log x)^2 + (\log 2)(\log x) - (\log 2^4)(\log 2^3) = 0\\ (\log x)^2 + (\log 2)(\log x) - (4 \log 2)(3 \log 2) = 0\\ (\log x + 4 \log 2)(\log x - 3 \log 2) = 0\\ \log x = -4 \log 2,\;3 \log 2\\ \log x = \log 2^{-4},\;\log 2^{3}\\ x= 2^{-4},\;2^3\\ x=\dfrac{1}{16},\;8

Therefore, the product of the solutions = 1 16 × 8 = 1 2 = 0.5 =\dfrac{1}{16} \times 8 = \dfrac{1}{2} = \boxed{0.5}

Yupz exactly the same way, ;)

Ashish Menon - 5 years, 1 month ago
Ikkyu San
May 9, 2016

( 2 x ) log x = 8 log 16 2 log x x log x = ( 2 3 ) 4 log 2 x log x = 2 12 log 2 2 log x log x log x = log 2 12 log 2 log x ( log x ) ( log x ) = ( 12 log 2 log x ) ( log 2 ) log 2 x + log x log 2 12 log 2 2 = 0 ( log x + 4 log 2 ) ( log x 3 log 2 ) = 0 log x = log 2 4 , log 2 3 x = 1 16 , 8 \begin{aligned}(2x)^{\log x}=&8^{\log16}\\2^{\log x}\cdot x^{\log x}=&(2^3)^{4\log2}\\x^{\log x}=&\dfrac{2^{12\log2}}{2^{\log x}}\\\log x^{\log x}=&\log2^{12\log2-\log x}\\(\log x)(\log x)=&(12\log2-\log x)(\log2)\\\log^2x+\log x\cdot\log2-12\log^22=&0\\(\log x+4\log2)(\log x-3\log2)=&0\\\log x=&\log2^{-4},\log2^3\\x=&\dfrac1{16},8\end{aligned}

Thus, the product of all solutions is 1 16 × 8 = 1 2 = 0.5 \dfrac1{16}\times8=\dfrac12=\boxed{0.5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...