The Power of Logs

Algebra Level 2

40000 x 10 log 4 40000 = 1 \large 40000 x ^ {10\log_4 40000} = 1

The real value x = 8 a b x = 8^{- \frac{a}{b}} , where a a and b b are coprime positive integers, satisfies the equation above. What is the value of a + b a + b ?


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

40000 x 10 log 4 40000 = 1 Taking log 4 on both sides log 4 40000 + 10 log 4 40000 log 4 x = 0 log 4 x = log 4 40000 10 log 4 40000 = 1 10 x = 4 1 10 = 2 1 5 = 8 1 15 \begin{aligned} 40000 x^{10\log_4 40000} & = 1 & \small \color{#3D99F6} \text{Taking }\log_4 \text{ on both sides} \\ \log_4 40000 + 10 \log_4 40000 \log_4 x & = 0 \\ \log_4 x & = - \frac {\log_4 40000}{10 \log_4 40000} = - \frac 1{10} \\ \implies x & = 4^{-\frac 1{10}} = 2^{-\frac 15} = 8^{-\frac 1{15}} \end{aligned}

Therefore, a + b = 1 + 15 = 16 a+b = 1 + 15 = \boxed{16} .

40000 ( 8 a b ) 10 log 4 ( 40000 ) = 1 a b = 1 15 40000 \left(8^{-\frac{a}{b}}\right)^{10 \log _4(40000)}=1 \Rightarrow \frac{a}{b}=\frac{1}{15}

40000 ( 8 1 15 ) 10 log 4 ( 40000 ) = 1 40000 \left(8^{-\frac{1}{15}}\right)^{10 \log _4(40000)} = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...