Let x , x lo g 1 0 x , y lo g 1 0 y , ( x y ) lo g 1 0 ( x y ) be four consecutive terms of a geometric progression. Find the number of ordered pairs ( x , y ) where x , y > 0 which satisfies the above condition.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Since x , x lo g x , y lo g y , ( x y ) lo g ( x y ) are in a geometric progression, we can take the log of every term to get an arithmetic progression. Thus, lo g x , ( lo g x ) 2 , ( lo g y ) 2 and ( lo g ( x y ) ) 2 are in an arithmetic progression.
From the first two terms, we can see that the common difference is ( lo g x ) 2 − lo g x
Then, from the last two terms, we have:
( lo g ( x y ) ) 2 − ( lo g y ) 2 = ( lo g x ) 2 − lo g x
( lo g x + lo g y ) 2 − ( lo g y ) 2 = ( lo g x ) 2 − lo g x
( lo g x ) 2 + 2 lo g x lo g y + ( lo g y ) 2 − ( lo g y ) 2 = ( lo g x ) 2 − lo g x
2 lo g x lo g y = − lo g x
( 2 lo g y + 1 ) lo g x = 0
So either lo g y = − 2 1 or lo g x = 0 .
If lo g x = 0 , we have the first two terms of the arithmetic progression are 0 , so the third term must also be 0 , meaning lo g y = 0 , giving an ordered pair ( 1 , 1 )
If lo g y = − 2 1 , then we have that lo g x , ( lo g x ) 2 ,and ( lo g y ) 2 form an arithmetic progression.
( lo g y ) 2 − ( lo g x ) 2 = ( lo g x ) 2 − lo g x
4 1 = 2 ( lo g x ) 2 − lo g x
8 ( lo g x ) 2 − lo g x − 1 = 0
Since the discriminant is positive, there are 2 real solutions for lo g x , making 2 more pairs ( x , y )
Thus, there are a total of 3 ordered pairs ( x , y ) that satisfy the equation.
Problem Loading...
Note Loading...
Set Loading...
The first thing to be noted is that if a , b , c , d are in GP, then lo g a , lo g b , lo g c , lo g d are in arithmetic progression. (you can check it yourself). Therefore if x , x lo g 1 0 x , y lo g 1 0 y , ( x y ) lo g 1 0 ( x y ) are in GP, then , lo g 1 0 ( x ) , lo g 1 0 ( x lo g 1 0 x ) , lo g 1 0 ( y lo g 1 0 y ) , lo g 1 0 ( ( x y ) lo g 1 0 ( x y ) )
or simply, lo g x , ( lo g x ) 2 , ( lo g y ) 2 , ( lo g ( x y ) ) 2 are in AP. Therefore, ( lo g ( x y ) ) 2 − ( lo g y ) 2 = ( lo g y ) 2 − ( lo g x ) 2 ( = c o m m o n d i f f e r e n c e i n t h e A P ) ⟹ ( lo g x y + lo g y ) ( lo g x y − lo g y ) = ( lo g y ) 2 − ( lo g x ) 2 ⟹ ( lo g x + 2 lo g y ) ( lo g x ) = ( lo g y ) 2 − ( lo g x ) 2 ⟹ ( lo g y ) 2 − 2 lo g x lo g y − 2 ( lo g x ) 2 = 0 . . . . . . . ( 1 )
Similarly ,
( lo g y ) 2 − ( lo g x ) 2 = ( lo g x ) 2 − lo g x ⟹ ( lo g y ) 2 − 2 ( lo g x ) 2 + lo g x = 0 . . . . . . ( 2 )
( 2 ) − ( 1 ) ⟹ 2 lo g y lo g x + lo g x = 0 . . . . . ( 3 ) ⟹ lo g x = 0 o r lo g y = − 2 1 ⟹ x = 1 o r y = 1 0 1
Case 1:- When x = 1 ,equation ( 3 ) o r ( 1 ) o r ( 2 ) gives us lo g y = 0 o r y = 1 hence one solution is ( 1 , 1 )
Case 2 :- When y = 1 0 1 o r lo g y = − 2 1 ,equation ( 2 ) gives us,
2 ( lo g x ) 2 − lo g x − 4 1 = 0
which is a quadratic equation in log x.
On solving by quadratic formula,
lo g x = 4 1 ± 3 or x = 1 0 4 1 + 3 , 1 0 4 1 − 3
which gives us two more solutions ( 1 0 4 1 + 3 , 1 0 1 ) , ( 1 0 4 1 − 3 , 1 0 1 )
Hence a total of 3 ordered pairs.
N o t e : − All logarithms used above are in base 10.