The Power of Logs!

Algebra Level 5

Let x , x log 10 x , y log 10 y , ( x y ) log 10 ( x y ) x,{ x }^{ \log _{ 10 }{ x } },{ y }^{ \log _{ 10 }{ y } },({ xy) }^{ \log _{ 10 }{ (xy) } }\quad be four consecutive terms of a geometric progression. Find the number of ordered pairs ( x , y ) (x,y) where x , y > 0 x,y>0 which satisfies the above condition.

2 4 More than 4 3 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Emil Joseph
May 9, 2015

The first thing to be noted is that if a , b , c , d a,b,c,d are in GP, then log a , log b , log c , log d \log { a, } \log { b, } \log { c, } \log { d } \quad are in arithmetic progression. (you can check it yourself). Therefore if x , x log 10 x , y log 10 y , ( x y ) log 10 ( x y ) x,{ x }^{ \log _{ 10 }{ x } },{ y }^{ \log _{ 10 }{ y } },{ (xy) }^{ \log _{ 10 }{ (xy) }} are in GP, then , log 10 ( x ) , log 10 ( x log 10 x ) , log 10 ( y log 10 y ) , log 10 ( ( x y ) log 10 ( x y ) ) \log _{ 10 }{ (x) } ,\log _{ 10 }{ ({ x }^{ \log _{ 10 }{ x } }) } ,\log _{ 10 }{ ({ y }^{ \log _{ 10 }{ y } }) } ,\log _{ 10 }{ ({ (xy) }^{ \log _{ 10 }{ (xy) } }) }

or simply, log x , ( log x ) 2 , ( log y ) 2 , ( log ( x y ) ) 2 \\ \log { x } ,{ (\log { x } })^{ 2 }{ ,(\log { y } })^{ 2 },{ (\log { (xy) } ) }^{ 2 }\\ are in AP. Therefore, ( log ( x y ) ) 2 ( log y ) 2 = ( log y ) 2 ( log x ) 2 ( = c o m m o n d i f f e r e n c e i n t h e A P ) ( log x y + log y ) ( log x y log y ) = ( log y ) 2 ( log x ) 2 ( log x + 2 log y ) ( log x ) = ( log y ) 2 ( log x ) 2 ( log y ) 2 2 log x log y 2 ( log x ) 2 = 0 . . . . . . . ( 1 ) ({ \log { (xy)) } }^{ 2 }\quad -\quad ({ \log { y } })^{ 2 }\quad =\quad { (\log { y) } }^{ 2 }\quad -\quad ({ \log { x } })^{ 2 }\quad (=\quad common\quad difference\quad in\quad the\quad AP)\\ \Longrightarrow \quad (\log { xy\quad + } \log { y\quad )( } \log { xy\quad - } \log { y } )\quad =\quad { (\log { y) } }^{ 2 }\quad -\quad ({ \log { x } })^{ 2 }\\ \Longrightarrow \quad (\log { x } +\quad 2\log { y } )(\log { x } )\quad =\quad { (\log { y) } }^{ 2 }\quad -\quad ({ \log { x } })^{ 2 }\\ \Longrightarrow \quad ({ \log { y } ) }^{ 2 }\quad -2\log { x } \log { y } -2({ \log { x) } }^{ 2 }\quad =\quad 0\quad .......(1)

Similarly ,

( log y ) 2 ( log x ) 2 = ( log x ) 2 log x ( log y ) 2 2 ( log x ) 2 + log x = 0...... ( 2 ) \\ \\ ({ \log { y } ) }^{ 2 }-({ \log { x) } }^{ 2 }\quad =\quad { (\log { x } ) }^{ 2 }\quad -\quad \log { x } \\ \Longrightarrow \quad ({ \log { y } ) }^{ 2 }-2({ \log { x) } }^{ 2 }+\log { x } \quad =\quad 0 ......(2)

( 2 ) ( 1 ) 2 log y log x + log x = 0..... ( 3 ) log x = 0 o r log y = 1 2 x = 1 o r y = 1 10 \\ (2)\quad -\quad (1)\\ \\ \Longrightarrow 2\log { y } \log { x } +\log { x } \quad =\quad 0 .....(3)\\ \Longrightarrow \quad \log { x=0\quad or } \log { y\quad =\quad -\frac { 1 }{ 2 } } \\ \Longrightarrow x=1\quad or\quad y=\quad \frac { 1 }{ \sqrt { 10 } } \\

Case 1:- When x = 1 x=1 ,equation ( 3 ) o r ( 1 ) o r ( 2 ) (3) or (1) or (2) gives us log y = 0 o r y = 1 \log { y\quad =\quad 0\quad or\quad y=\quad 1 } hence one solution is ( 1 , 1 ) \\ { \boxed { (1,1) } }

Case 2 :- When y = 1 10 o r log y = 1 2 y=\frac { 1 }{ \sqrt { 10 } }\quad or\quad \log { y } \quad =\quad -\frac { 1 }{ 2 } ,equation ( 2 ) (2) gives us,

2 ( log x ) 2 log x 1 4 = 0 \\ 2{ (\log { x } ) }^{ 2 }-\quad \log { x } -\frac { 1 }{ 4 } \quad =0\quad \\

which is a quadratic equation in log x.

On solving by quadratic formula,

log x = 1 ± 3 4 \\ \log { x } =\frac { 1\pm \sqrt { 3 } }{ 4 } \\ or x = 10 1 + 3 4 , 10 1 3 4 x={ 10 }^{ \frac { 1+\sqrt { 3 } }{ 4 } },{ 10 }^{ \frac { 1-\sqrt { 3 } }{ 4 } }\\ \\

which gives us two more solutions ( 10 1 + 3 4 , 1 10 ) , ( 10 1 3 4 , 1 10 ) \boxed{({ 10 }^{ \frac { 1+\sqrt { 3 } }{ 4 } },\frac { 1 }{ \sqrt { 10 } } ),({ 10 }^{ \frac { 1-\sqrt { 3 } }{ 4 } },\frac { 1 }{ \sqrt { 10 } } )}

Hence a total of 3 \boxed { 3 } ordered pairs.

N o t e : Note :- All logarithms used above are in base 10.

Jason Zou
Jun 30, 2015

Since x , x log x , y log y , ( x y ) log ( x y ) x, x^{\log{ x}}, y^{\log{ y}},(xy)^{\log(xy)} are in a geometric progression, we can take the log of every term to get an arithmetic progression. Thus, log x , ( log x ) 2 , ( log y ) 2 \log { x},(\log x)^2,(\log y)^2 and ( log ( x y ) ) 2 (\log(xy))^2 are in an arithmetic progression.

From the first two terms, we can see that the common difference is ( log x ) 2 log x (\log x)^2-\log{ x}

Then, from the last two terms, we have:

( log ( x y ) ) 2 ( log y ) 2 = ( log x ) 2 log x (\log (xy))^2-(\log y)^2 = (\log x)^2 - \log{ x}

( log x + log y ) 2 ( log y ) 2 = ( log x ) 2 log x (\log{ x} + \log{ y})^2-(\log y)^2 = (\log x)^2 - \log{ x}

( log x ) 2 + 2 log x log y + ( log y ) 2 ( log y ) 2 = ( log x ) 2 log x (\log x)^2+2\log{ x}\log{ y}+(\log y)^2-(\log y)^2 = (\log x)^2 - \log{ x}

2 log x log y = log x 2\log{ x}\log{ y}=-\log{ x}

( 2 log y + 1 ) log x = 0 (2\log{ y}+1)\log{ x}=0

So either log y = 1 2 \log{ y}=-\frac{1}{2} or log x = 0 \log{ x}=0 .

If log x = 0 \log{ x}=0 , we have the first two terms of the arithmetic progression are 0 0 , so the third term must also be 0 0 , meaning log y = 0 \log{ y}=0 , giving an ordered pair ( 1 , 1 ) (1,1)

If log y = 1 2 \log{ y}=-\frac{1}{2} , then we have that log x , ( log x ) 2 \log { x},(\log x)^2 ,and ( log y ) 2 (\log y)^2 form an arithmetic progression.

( log y ) 2 ( log x ) 2 = ( log x ) 2 log x (\log{ y})^2-(\log{ x})^2=(\log{ x})^2-\log{ x}

1 4 = 2 ( log x ) 2 log x \frac{1}{4}=2(\log{ x})^2-\log{ x}

8 ( log x ) 2 log x 1 = 0 8(\log{ x})^2-\log{ x}-1=0

Since the discriminant is positive, there are 2 2 real solutions for log x \log{ x} , making 2 2 more pairs ( x , y ) (x,y)

Thus, there are a total of 3 \boxed{3} ordered pairs ( x , y ) (x,y) that satisfy the equation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...