The power of trig identities!

Geometry Level 3

Find the value of cos π 15 cos 2 π 15 cos 3 π 15 cos 4 π 15 cos 5 π 15 cos 6 π 15 cos 7 π 15 \cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos \frac{6\pi}{15} \cos \frac{7\pi}{15}

1 64 \frac{1}{64} 1 512 \frac{1}{512} 1 128 \frac{1}{128} 1 32 \frac{1}{32} 1 256 \frac{1}{256}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

ChengYiin Ong
Mar 20, 2020

We will first calculate three values: cos π 15 cos 2 π 15 cos 4 π 15 cos 7 π 15 \cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{7\pi}{15} cos 3 π 15 cos 6 π 15 \cos \frac{3\pi}{15} \cos \frac{6\pi}{15} cos 5 π 15 \cos \frac{5\pi}{15} The first value is given by:

cos π 15 cos 2 π 15 cos 4 π 15 cos 7 π 15 \cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{7\pi}{15}

= 16 cos π 15 sin π 15 cos 2 π 15 cos 4 π 15 cos 7 π 15 16 sin π 15 =\frac{16\cos \frac{\pi}{15}\sin \frac{\pi}{15}\cos \frac{2\pi}{15}\cos \frac{4\pi}{15}\cos \frac{7\pi}{15}}{16\sin \frac{\pi}{15}} = 8 sin 2 π 15 cos 2 π 15 cos 4 π 15 cos 7 π 15 16 sin π 15 =\frac{8\sin \frac{2\pi}{15}\cos \frac{2\pi}{15}\cos \frac{4\pi}{15}\cos \frac{7\pi}{15}}{16\sin \frac{\pi}{15}} = 4 sin 4 π 15 cos 4 π 15 cos 7 π 15 16 sin π 15 =\frac{4\sin \frac{4\pi}{15}\cos \frac{4\pi}{15}\cos \frac{7\pi}{15}}{16\sin \frac{\pi}{15}} = 2 sin 8 π 15 cos 7 π 15 16 sin π 15 =\frac{2\sin \frac{8\pi}{15}\cos \frac{7\pi}{15}}{16\sin \frac{\pi}{15}} = 2 sin 7 π 15 cos 7 π 15 16 sin π 15 =\frac{2\sin \frac{7\pi}{15}\cos \frac{7\pi}{15}}{16\sin \frac{\pi}{15}} = sin 14 π 15 16 sin π 15 =\frac{\sin \frac{14\pi}{15}}{16\sin \frac{\pi}{15}} = sin π 15 16 sin π 15 =\frac{\sin \frac{\pi}{15}}{16\sin \frac{\pi}{15}} = 1 16 =\frac{1}{16}

The second value is given by: cos 3 π 15 cos 6 π 15 \cos \frac{3\pi}{15} \cos \frac{6\pi}{15} = 4 sin 3 π 15 cos 3 π 15 cos 6 π 15 4 sin 3 π 15 =\frac{4\sin \frac{3\pi}{15} \cos \frac{3\pi}{15} \cos \frac{6\pi}{15}}{4\sin \frac{3\pi}{15}} = 2 sin 6 π 15 cos 6 π 15 4 sin 3 π 15 =\frac{2\sin \frac{6\pi}{15} \cos \frac{6\pi}{15}}{4\sin \frac{3\pi}{15}} = sin 12 π 15 4 sin 3 π 15 =\frac{\sin \frac{12\pi}{15}}{4\sin \frac{3\pi}{15}} = sin 3 π 15 4 sin 3 π 15 =\frac{\sin \frac{3\pi}{15}}{4\sin \frac{3\pi}{15}} = 1 4 =\frac{1}{4}

The third value is given by: cos 5 π 15 \cos \frac{5\pi}{15} = 1 2 =\frac{1}{2}

Thus, the desired value:

cos π 15 cos 2 π 15 cos 3 π 15 cos 4 π 15 cos 5 π 15 cos 6 π 15 cos 7 π 15 \cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos \frac{6\pi}{15} \cos \frac{7\pi}{15} = ( 1 16 ) ( 1 4 ) ( 1 2 ) =(\frac{1}{16})(\frac{1}{4})(\frac{1}{2}) = 1 128 =\frac{1}{128}

Chew-Seong Cheong
Mar 21, 2020

P = cos π 15 cos 2 π 15 cos 3 π 15 cos 4 π 15 cos 5 π 15 cos 6 π 15 cos 7 π 15 = cos π 15 cos 2 π 15 cos 4 π 15 cos 7 π 15 × cos 3 π 15 cos 6 π 15 × cos 5 π 15 Note that cos ( π θ ) = cos θ = cos π 15 cos 2 π 15 cos 4 π 15 ( cos 8 π 15 ) × cos π 5 cos 2 π 5 × cos π 3 and cos A cos B = 1 2 ( cos ( A B ) + cos ( A + B ) ) = sin π 15 cos π 15 cos 2 π 15 cos 4 π 15 cos 8 π 15 sin π 15 × 1 2 ( cos π 5 + cos 3 π 5 ) × 1 2 See proof: k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 = sin 2 π 15 cos 2 π 15 cos 4 π 15 cos 8 π 15 2 sin π 15 × 1 2 ( 1 2 ) × 1 2 = sin 4 π 15 cos 4 π 15 cos 8 π 15 4 sin π 15 × 1 8 = sin 8 π 15 cos 8 π 15 8 sin π 15 × 1 8 = sin 16 π 15 16 sin π 15 × 1 8 = sin π 15 16 sin π 15 × 1 8 = 1 128 \begin{aligned} P & = \cos \frac \pi{15} \cos \frac {2\pi}{15} \cos \frac {3\pi}{15} \cos \frac {4\pi}{15} \cos \frac {5\pi}{15} \cos \frac {6\pi}{15} \cos \frac {7\pi}{15} \\ & = \cos \frac \pi{15} \cos \frac {2\pi}{15} \cos \frac {4\pi}{15} \blue{\cos \frac {7\pi}{15}} \times \cos \frac {3\pi}{15} \cos \frac {6\pi}{15} \times \cos \frac {5\pi}{15} & \small \blue{\text{Note that }\cos (\pi - \theta) = - \cos \theta} \\ & = \small \cos \frac \pi{15} \cos \frac {2\pi}{15} \cos \frac {4\pi}{15} \blue{\left(-\cos \frac {8\pi}{15}\right)} \times \red{\cos \frac \pi 5 \cos \frac {2\pi}5} \times \cos \frac \pi 3 & \small \red{\text{and }\cos A \cos B = \frac 12 (\cos(A-B) + \cos (A+B))} \\ & = \small - \frac {\blue{\sin \frac \pi{15}} \cos \frac \pi{15} \cos \frac {2\pi}{15} \cos \frac {4\pi}{15} \cos \frac {8\pi}{15}}{\blue{\sin \frac \pi{15}}} \times \red{\frac 12\left(\cos \frac \pi 5 + \cos \frac {3\pi}5 \right)} \times \frac 12 & \small \red{\text{See proof: }\sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) = \frac 12} \\ & = \small - \frac {\sin \frac {2\pi}{15} \cos \frac {2\pi}{15} \cos \frac {4\pi}{15} \cos \frac {8\pi}{15}}{2\sin \frac \pi{15}} \times \red{\frac 12\left(\frac 12 \right)} \times \frac 12 \\ & = \small - \frac {\sin \frac {4\pi}{15} \cos \frac {4\pi}{15} \cos \frac {8\pi}{15}}{4\sin \frac \pi{15}} \times \frac 18 \\ & = \small - \frac {\sin \frac {8\pi}{15} \cos \frac {8\pi}{15}}{8\sin \frac \pi{15}} \times \frac 18 \\ & = \small - \frac {\blue{\sin \frac {16\pi}{15}}}{16\sin \frac \pi{15}} \times \frac 18 = - \frac {\blue{-\sin \frac \pi{15}}}{16\sin \frac \pi{15}} \times \frac 18 \\ & = \boxed{\frac 1{128}} \end{aligned}


Reference: Proof for k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 \displaystyle \sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) = \frac 12

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...