The Power! series

Let, S = 1 1 2 4 1 3 4 + 1 4 4 1 5 4 + 1 6 4 1 7 4 1 8 4 + 1 9 4 + . . . . . . . . . + 1 1 5 4 + 1 1 6 4 1 1 7 4 1 1 8 4 . . . . . . . . + 1 10 0 4 1 10 1 4 1 10 2 4 1 10 3 4 + 1 10 4 4 . . . . . . . . S=1-\frac{1}{2^{4}}-\frac{1}{3^{4}}+\frac{1}{4^{4}} -\frac{1}{5^4}+\frac{1}{6^4} -\frac{1}{7^4}-\frac{1}{8^4}+\frac{1}{9^4}+.........+\frac{1}{15^4}+\frac{1}{16^4}-\frac{1}{17^4} -\frac{1}{18^4}-........+\frac{1}{100^4}-\frac{1}{101^4}-\frac{1}{102^4}-\frac{1}{103^4}+\frac{1}{104^4}-........ .

Say the answer S = π a c S=\frac{π^a}{c} . Find the value of a + c a+c .

S = ( 1 ) λ ( n ) n 4 S=\sum \frac{(-1)^{\lambda(n)}}{n^4} . ( 1 ) λ ( ) (-1)^{\lambda(\cdot)} is the Liouville function.

Obviously the series seems to be unpatterned ,but the pattern is hide in the series and the Title .

Hint: All prime~n have -(minus) before them. 15 = 3 5 15=3*5 ; 100 = 2 2 5 5 100=2*2*5*5 .


The answer is 109.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pedro Cardoso
Aug 12, 2019

Note: χ ( n ) \chi (n) is actually the Liouville function , typically represented as λ ( n ) \lambda (n) .

Since λ ( n ) \lambda(n) is completely multiplicative , we can factor S S :

S = ( 1 ( 2 0 ) 4 1 ( 2 1 ) 4 + 1 ( 2 2 ) 4 + . . . ) ( 1 ( 3 0 ) 4 1 ( 3 1 ) 4 + 1 ( 3 2 ) 4 + . . . ) ( 1 ( 5 0 ) 4 1 ( 5 1 ) 4 + 1 ( 5 2 ) 4 + . . . ) . . . S=\left(\frac{1}{\left(2^0\right)^4}-\frac{1}{\left(2^1\right)^4}+\frac{1}{\left(2^2\right)^4}+...\right)\left(\frac{1}{\left(3^0\right)^4}-\frac{1}{\left(3^1\right)^4}+\frac{1}{\left(3^2\right)^4}+...\right)\left(\frac{1}{\left(5^0\right)^4}-\frac{1}{\left(5^1\right)^4}+\frac{1}{\left(5^2\right)^4}+...\right)...

Using the sum of a geometric progression and the Euler product formula :

S = primes ( 1 1 + 1 p 4 ) = primes 1 ( 1 + 1 p 4 ) ( 1 1 p 4 ) ( 1 1 p 4 ) = primes ( 1 1 p 4 ) primes ( 1 1 p 8 ) = ζ ( 8 ) ζ ( 4 ) = π 8 9450 90 π 4 = π 4 105 \displaystyle S=\prod_{\text{primes}}\left(\frac{1}{1+\frac{1}{p^4}}\right)=\prod_{\text{primes}}\frac{1}{\left(1+\frac{1}{p^4}\right)}\cdot\frac{\left(1-\frac{1}{p^4}\right)}{\left(1-\frac{1}{p^4}\right)}=\frac{ \displaystyle \prod_{\text{primes}}\left(1-\frac{1}{p^4}\right)}{ \displaystyle \prod_{\text{primes}}\left(1-\frac{1}{p^8}\right)}=\frac{\zeta (8)}{\zeta(4)}=\frac{\pi^8}{9450}\cdot\frac{90}{\pi^4}=\frac{\pi^4}{105}

Thus, the sum is 105 + 4 = 109 105 + 4 = \boxed{109}

Slightly different approach:

Firstly, I define λ ( n ) = ( 1 ) Ω ( n ) \lambda(n)=(-1)^{\Omega(n)} to be Liouville function (as defined here ). Your definition is a bit faulty as Liouville function can be either 1 1 or 1 -1 , then ( 1 ) λ ( n ) (-1)^{\lambda(n)} would be always 1 -1 .

If S S is multiplied by function ζ ( 4 ) = n = 1 1 n 4 \zeta(4)=\sum_{n=1}^{\infty}\frac{1}{n^4} , we get

G = S × ζ ( 4 ) = n = 1 λ 1 ( n ) n 4 = n = 1 d n λ ( d ) n 4 G= S \times \zeta(4) = \sum_{n=1}^{\infty} \frac{\lambda * 1(n)}{n^4}=\sum_{n=1}^{\infty}\frac{\sum_{d|n}\lambda (d) }{n^4}

Note that * indicates Dirichlet convolution. A property of Liouville function is

λ ( n ) = { 1 n p e r f e c t s q u a r e 0 o t h e r w i s e \lambda(n)=\begin{cases} 1 & n \ perfect \ square\\ 0 & otherwise \\ \end{cases}

Therefore G = n = 1 1 ( n 2 ) 4 = ζ ( 2 × 4 ) = ζ ( 8 ) G=\sum_{n=1}^{\infty}\frac{1}{(n^2)^4}=\zeta(2\times 4)=\zeta(8)

finally

G = ζ ( 8 ) = S × ζ ( 4 ) S = ζ ( 8 ) ζ ( 4 ) = π 8 9450 π 4 90 G=\zeta(8)=S\times \zeta(4) \implies S=\frac{\zeta(8)}{\zeta(4)}=\frac{\frac{\pi^8}{9450}}{\frac{\pi^4}{90}}

Sorry. But I claimed λ ( n ) \lambda(n) differently.

Alapan Das - 1 year, 9 months ago

Log in to reply

It is ok. I just noticed you edited the question

A Former Brilliant Member - 1 year, 9 months ago
Alapan Das
Aug 11, 2019

Let, Λ \Lambda is a function of s s . Now,

Λ ( s ) = 1 1 2 s 1 3 s + 1 4 s 1 5 s + 1 6 s 1 7 s 1 8 s + 1 9 s + . . . . . . . . . + 1 1 5 s + 1 1 6 s 1 1 7 s 1 1 8 s . . . . . . . . \Lambda(s)=1-\frac{1}{2^{s}}-\frac{1}{3^{s}}+\frac{1}{4^{s}} -\frac{1}{5^s}+\frac{1}{6^s} -\frac{1}{7^s}-\frac{1}{8^s}+\frac{1}{9^s}+.........+\frac{1}{15^s}+\frac{1}{16^s}-\frac{1}{17^s} -\frac{1}{18^s}-........ .

Notice, Λ = ( 1 ) λ ( n ) n s \Lambda=\sum \frac{(-1)^{\lambda(n)}}{n^s} . Where, λ ( n ) = n a i \lambda(n)=\sum_{n} a_i . Where a i a_i s are the power of prime elements of n n .

Or, λ ( n ) \lambda(n) is the sum of the powers of the prime factors of n

For example , λ ( 500 ) = 2 2 5 3 = 2 + 3 = 5 \lambda(500)={2^2}{5^3}=2+3=5 .

See, ( 1 + 1 2 s ) Λ ( s ) = 1 1 3 s 1 5 s . . . . . . (1+\frac{1}{2^s})\Lambda(s)=1-\frac{1}{3^s} -\frac{1}{5^s} -...... .

And continuing like this we get....

Λ ( s ) = 1 p r i m e s ( 1 + 1 p s ) \Lambda(s)=\frac{1}{\prod_{primes}(1+\frac{1}{p^s})} .

Likely we get Λ ( s ) = ζ ( 2 s ) ζ ( s ) \Lambda(s)=\frac{\zeta(2s)}{\zeta(s)} .

Replacing s s by 4 4 in above equation we get Λ ( 4 ) = ζ ( 8 ) ζ ( 4 ) = π 4 105 \Lambda(4)=\frac{\zeta(8)}{\zeta(4)}=\frac{π^4}{105} .

Hence, a + c = 109 a+c=109 .

Nice solution! Just as a small note, I think you should define χ ( n ) \chi(n) more precisely, or just say it is the Liouville function , usually represented as λ ( n ) \lambda(n) . The function you called λ ( n ) \lambda(n) in this solution also is very well-known: It's the big prime omega function .

Pedro Cardoso - 1 year, 10 months ago

Log in to reply

Thanks. I've updated the problem statement to reflect this.

Brilliant Mathematics Staff - 1 year, 9 months ago

I didn't know the name. I just found it. And by the way solver has to find the χ ( n ) \chi(n) . Thanks for giving the link. I heard about Poyla conjecture. But now I have known what it was.

Alapan Das - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...