"The powers of 3" - 2

Algebra Level 1

If 3 x + 1 3 x 1 = 8 9 \large {\color{#3D99F6}3}^{\color{#E81990}x + 1} - {\color{#3D99F6}3}^{\color{#E81990}x - 1} = {\color{teal}\dfrac89} then find the value of x \color{#E81990}x .


Also try The powers of three


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Feb 28, 2019

3 x + 1 3 x 1 = 8 9 3 x 1 ( 3 2 1 ) = 8 × 3 2 8 × 3 x 1 = 8 × 3 2 x 1 = 2 x = 1 \begin{aligned} 3^{x+1} - 3^{x-1} & = \frac 89 \\ 3^{x-1}\left(3^2 - 1\right) & = 8 \times 3^{-2} \\ 8 \times 3^{\color{#3D99F6}x-1} & = 8 \times 3^{\color{#3D99F6}-2} \\ \implies \color{#3D99F6} x - 1& = \color{#3D99F6} -2 \\ x & = \boxed{-1} \end{aligned}

Henry U
Feb 28, 2019

3 x + 1 3 x 1 = 8 9 9 3 x + 1 9 3 x 1 = 8 9 3 x + 1 1 3 x + 1 = 8 9 u u = 8 u = 1 3 x + 1 = 1 x + 1 = 0 x = 1 \begin{aligned} 3^{x+1} - 3^{x-1} &= \frac 89 \\ 9 \cdot 3^{x+1} - 9 \cdot 3^{x-1} &= 8 \\ 9 \cdot {\color{#D61F06}3^{x+1}} - 1 \cdot {\color{#D61F06}3^{x+1}} &= 8 \\ 9{\color{#D61F06}u} - {\color{#D61F06}u} &= 8 \\ {\color{#D61F06}u} &= 1 \\ {\color{#D61F06}3^{x+1}} &= 1 \\ x+1 &= 0 \\ x &= \boxed{-1} \end{aligned}

Hitesh Behera
Nov 23, 2019

LHS= 3^(x+1)-3^(x-1) 3^(x)×3-3^(x)×3^(-1) 3^(x)[3- f r a c 13 frac {1}{3} ] 3^(x) f r a c 83 frac {8}{3} 3^(x) × f r a c 89 frac {8}{9} × 3 3^(x+1) × f r a c 89 frac {8}{9}

RHS= f r a c 89 frac {8}{9}

Hence by comparison we get 3^(x+1)=1 3^(x+1)=3^0 Therefore, x+1=0 Hence, x= -1

Vedant Saini
Feb 28, 2019

Note that 8 9 = 1 1 9 \frac{8}{9} = \color{#20A900}1 \color{#333333}- \color{#3D99F6}\frac{1}{9}

= 3 0 3 2 = \color{#20A900}3^0 \color{#333333}- \color{#3D99F6}3^{-2}

which gives x = 1 x = -1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...