The quadratic formula in a triangle

Geometry Level pending

In A B C \triangle ABC , C A = 1 , C A + A B = 2 B C cos A B C CA=1,\ CA+AB=2BC\cos \angle ABC .

If A B C \triangle ABC has the maximum area, find the value of 10000 cos B A C \lfloor 10000\cos \angle BAC \rfloor .


The answer is 5930.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 13, 2019

Using the usual notation of a = B C a=BC , b = C A = 1 b=CA=1 , and c = A B c=AB and A A , B B , and C C for the three angles, we have 1 + c = 2 a cos B 1 + c = 2a\cos B . By cosine rule,

1 = a 2 + c 2 2 a c cos B = a 2 + c 2 c ( 1 + c ) c = a 2 1 cos B = 1 + c 2 a = a 2 \begin{aligned} 1 & = a^2 + c^2 - 2ac \cos B \\ & = a^2 + c^2 - c(1+c) \\ \implies c & = a^2 - 1 \\ \implies \cos B & = \frac {1+c}{2a} = \frac a2 \end{aligned}

Area of A B C \triangle ABC is given:

A = a c 2 sin B = a ( a 2 1 ) 2 sin B = cos B ( 4 cos 2 B 1 ) sin B = 1 2 sin 2 B ( 2 cos 2 B + 1 ) = sin 4 B + sin 2 B 2 d A d B = 2 cos 4 B + cos 2 B Putting d A d B = 0 4 cos 2 2 B + cos 2 B 2 = 0 cos 2 B = ± 33 1 8 \begin{aligned} A_\triangle & = \frac {ac}2 \sin B = \frac {a(a^2-1)}2 \sin B \\ & = \cos B(4\cos^2 B-1)\sin B \\ & = \frac 12 \sin 2B(2\cos 2B+1) \\ & = \frac {\sin 4B+\sin 2B}2 \\ \frac {dA_\triangle}{dB} & = 2\cos 4B + \cos 2B & \small \blue{\text{Putting }\frac {dA_\triangle}{dB} = 0} \\ 4\cos^2 2B + \cos 2B - 2 & = 0 \\ \implies \cos 2B & = \frac {\pm\sqrt{33}-1}8 \end{aligned}

Since d A d B < 0 \dfrac {dA_\triangle}{dB} < 0 when cos 2 B = 33 1 8 \cos 2B = \dfrac {\sqrt{33}-1}8 , A \implies A_\triangle is maximum when cos 2 B = 33 1 8 \cos 2B = \dfrac {\sqrt{33}-1}8 .

By sine rule, we have sin A a = sin B b sin A = a sin B = 2 cos B sin B = sin 2 B cos A = cos 2 B = 33 1 8 0.593070331 10000 cos A = 5930 \dfrac {\sin A}a = \dfrac {\sin B}b \implies \sin A = a\sin B = 2\cos B \sin B = \sin 2B \implies \cos A = \cos 2B = \dfrac {\sqrt{33}-1}8 \approx 0.593070331 \implies \lfloor 10000 \cos A \rfloor = \boxed{5930} .

David Vreken
Oct 12, 2019

Let a = B C a = BC , b = A C b = AC , and c = A B c = AB . Then from the given information, b = 1 b = 1 and 1 + c = 2 a cos B 1 + c = 2a \cos B .

By the law of cosines, cos B = a 2 + c 2 b 2 2 b c \cos B = \frac{a^2 + c^2 - b^2}{2bc} . Substituting into the equation with b = 1 b = 1 and simplifying gives a = c + 1 a = \sqrt{c + 1} .

Therefore, the three sides of the triangle are 1 1 , c + 1 \sqrt{c + 1} , and c c . By Heron's formula, the area simplifies to A = 1 4 c c 2 + 2 c + 3 A = \frac{1}{4}c\sqrt{-c^2 + 2c + 3} which rearranges to 16 A 2 = c 4 + 2 c 3 + 3 c 2 16A^2 = -c^4 + 2c^3 + 3c^2 . Using implicit differentiation, the maximum area occurs when 4 c 3 + 6 c 2 + 6 c = 2 c ( c 2 3 c 3 ) = 0 -4c^3 + 6c^2 + 6c = -2c(c^2 - 3c -3) = 0 , which by the quadratic equation is c = 1 4 ( 3 + 33 ) c = \frac{1}{4}(3 + \sqrt{33}) for c > 0 c > 0 .

By the law of cosines, cos A = b 2 + c 2 a 2 2 b c \cos A = \frac{b^2 + c^2 - a^2}{2bc} . Substituting b = 1 b = 1 , a = c + 1 a = \sqrt{c + 1} , and c = 1 4 ( 3 + 33 ) c = \frac{1}{4}(3 + \sqrt{33}) gives cos A = 1 8 ( 33 1 ) \cos A = \frac{1}{8}(\sqrt{33} - 1) , so that 10000 cos B A C = 5930 \lfloor 10000 \cos \angle BAC \rfloor = \boxed{5930} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...