A probability problem by Rohit Sharma

If ( 1 + x + x 2 + x 3 ) 7 = r = 0 21 a r x r (1+{x}+{x}^2+{x}^3)^7=\displaystyle\sum_{r=0}^{21}{{a_r}x^r} , find the value of ( a 0 + a 4 + a 8 + a 12 + a 16 + a 20 ) ({a_0}+{a_4}+{a_8}+{a_{12}}+{a_{16}}+{a_{20}}) .


The answer is 4096.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohit Sharma
Jun 1, 2017

Putting x = i {x=i} , where i = 1 {i}=\displaystyle\sqrt{-1}

( 1 + i + i 2 + i 3 ) 7 = a 0 + a 1 i + a 2 i 2 + . . . + a 21 i 21 (1+{i}+{i}^2+{i}^3)^7={a_0}+{a_1}{i}+{a_2}{i}^2+...+{a_{21}}{i}^{21}

0 = ( a 0 a 2 + a 4 . . . ) + i ( a 1 a 3 + a 5 . . . ) 0=({a_0}-{a_2}+{a_4}-...)+{i}({a_1}-{a_3}+{a_5}...)

Therefore ,
( a 0 a 2 + a 4 . . . ) = 0 ({a_0}-{a_2}+{a_4}-...)=0 ....(1)

Putting x = 1 , 1 {x=1,-1} , we get
4 7 = ( a 0 + a 1 + a 2 + . . . ) 4^7=({a_0}+{a_1}+{a_2}+...) and 0 = ( a 0 a 1 + a 2 . . . ) 0=({a_0}-{a_1}+{a_2}-...) respectively.

By adding above two equations we get ,

4 7 = 2 ( a 0 + a 2 + a 4 + . . . ) 4^7=2({a_0}+{a_2}+{a_4}+...)
or 2 13 = ( a 0 + a 2 + a 4 + . . . ) 2^{13}=({a_0}+{a_2}+{a_4}+...) ....(2)

Now adding (1) and (2) we get ,

2 ( a 0 + a 4 + a 8 + a 12 + a 16 + a 20 ) = 2 13 2({a_0}+{a_4}+{a_8}+{a_{12}}+{a_{16}}+{a_{20}})=2^{13}

Hence , a 0 + a 4 + a 8 + a 12 + a 16 + a 20 = 4096 {a_0}+{a_4}+{a_8}+{a_{12}}+{a_{16}}+{a_{20}}= 4096

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...