Let the area of a regular unit n -gon be A ( n ) , the area of its circumcircle be C ( n ) , and the area of its incircle be I ( n ) .
What is n → ∞ lim C ( n ) − A ( n ) A ( n ) − I ( n ) ?
You can try this problem first
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
n → ∞ lim π − 2 1 n sin ( n 2 π ) 2 1 n sin ( n 2 π ) − π SquaredEuclideanDistance [ { 0 , 0 } , 2 1 { cos ( n 2 π ) + 1 , sin ( n 2 π ) } ] ⟹ 2 1
Problem Loading...
Note Loading...
Set Loading...
Consider an isosceles triangle formed by one side of the unit regular n -gon with the center of the n -gon. Let the circumradius and inradius of the n -gon be R and r respectively. By Pythagorean theorem, we have R 2 = r 2 + ( 2 1 ) 2 = r 2 + 4 1 . We note that the angle of of the isosceles triangle at the circle of the n -gon is n 2 π , then r = 2 tan n π 1 . Then we have:
L = n → ∞ lim C ( n ) − A ( n ) A ( n ) − I ( n ) = n → ∞ lim π ( r 2 + 4 1 ) − 2 n r 2 n r − π r 2 = n → ∞ lim 4 tan 2 n π π + 4 π − 4 tan n π n 4 tan n π n − 4 tan 2 n π π = n → ∞ lim π + π tan 2 n π − n tan n π n tan n π − π = n → ∞ lim n π + n π tan 2 n π − tan n π tan n π − n π = x → 0 lim x + x tan 2 x − tan x tan x − x = x → 0 lim ( tan x − x x + x tan 2 x − tan x ) − 1 = x → 0 lim ( tan x − x x tan 2 x − 1 ) − 1 = x → 0 lim ( sec 2 x − 1 tan 2 x + 2 x tan x sec 2 x − 1 ) − 1 = x → 0 lim ( tan 2 x tan 2 x + 2 x tan x sec 2 x − 1 ) − 1 = x → 0 lim ( 1 + tan x 2 x + tan x − 1 ) − 1 = x → 0 lim ( sec 2 x 2 ) − 1 = 2 1 = 0 . 5 Multiply up and down by 4 tan 2 n π Divide up and down by n Let x = n π A 0/0 case, L’H o ˆ pital’s rule applies. Differentiate up and down w.r.t. x A 0/0 case again Differentiate up and down w.r.t. x