The Ratio of the Areas

Geometry Level 4

Let the area of a regular unit n n -gon be A ( n ) A(n) , the area of its circumcircle be C ( n ) C(n) , and the area of its incircle be I ( n ) I(n) .

What is lim n A ( n ) I ( n ) C ( n ) A ( n ) ? \displaystyle\lim_{n\to\infty}\frac{A(n)-I(n)}{C(n)-A(n)}?


You can try this problem first


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 29, 2018

Consider an isosceles triangle formed by one side of the unit regular n n -gon with the center of the n n -gon. Let the circumradius and inradius of the n n -gon be R R and r r respectively. By Pythagorean theorem, we have R 2 = r 2 + ( 1 2 ) 2 = r 2 + 1 4 R^2 = r^2 + \left(\frac 12\right)^2 = r^2 + \frac 14 . We note that the angle of of the isosceles triangle at the circle of the n n -gon is 2 π n \frac {2\pi}n , then r = 1 2 tan π n r = \frac 1{2\tan \frac \pi n} . Then we have:

L = lim n A ( n ) I ( n ) C ( n ) A ( n ) = lim n n r 2 π r 2 π ( r 2 + 1 4 ) n r 2 = lim n n 4 tan π n π 4 tan 2 π n π 4 tan 2 π n + π 4 n 4 tan π n Multiply up and down by 4 tan 2 π n = lim n n tan π n π π + π tan 2 π n n tan π n Divide up and down by n = lim n tan π n π n π n + π n tan 2 π n tan π n Let x = π n = lim x 0 tan x x x + x tan 2 x tan x = lim x 0 ( x + x tan 2 x tan x tan x x ) 1 = lim x 0 ( x tan 2 x tan x x 1 ) 1 A 0/0 case, L’H o ˆ pital’s rule applies. = lim x 0 ( tan 2 x + 2 x tan x sec 2 x sec 2 x 1 1 ) 1 Differentiate up and down w.r.t. x = lim x 0 ( tan 2 x + 2 x tan x sec 2 x tan 2 x 1 ) 1 = lim x 0 ( 1 + 2 x tan x + tan x 1 ) 1 A 0/0 case again = lim x 0 ( 2 sec 2 x ) 1 Differentiate up and down w.r.t. x = 1 2 = 0.5 \begin{aligned} L & = \lim_{n \to \infty} \frac {A(n)-I(n)}{C(n) - A(n)} \\ & = \lim_{n \to \infty} \frac {\frac {nr}2 - \pi r^2}{\pi \left(r^2 + \frac 14\right) - \frac {nr}2} \\ & = \lim_{n \to \infty} \frac {\frac n{4\tan \frac \pi n} - \frac \pi{4\tan^2 \frac \pi n}}{\frac \pi{4\tan^2 \frac \pi n} + \frac \pi 4 - \frac n{4\tan \frac \pi n}} & \small \color{#3D99F6} \text{Multiply up and down by }4\tan^2 \frac \pi n \\ & = \lim_{n \to \infty} \frac {n \tan \frac \pi n - \pi}{\pi + \pi \tan^2 \frac \pi n - n \tan \frac \pi n} & \small \color{#3D99F6} \text{Divide up and down by }n \\ & = \lim_{n \to \infty} \frac {\tan \frac \pi n - \frac \pi n}{\frac \pi n + \frac \pi n\tan^2 \frac \pi n - \tan \frac \pi n} & \small \color{#3D99F6} \text{Let }x = \frac \pi n \\ & = \lim_{x \to 0} \frac {\tan x - x}{x + x \tan^2 x - \tan x} \\ & = \lim_{x \to 0} \left(\frac {x + x \tan^2 x - \tan x}{\tan x - x}\right)^{-1} \\ & = \lim_{x \to 0} \left({\color{#3D99F6}\frac {x \tan^2 x}{\tan x - x}} -1 \right)^{-1} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{x \to 0} \left({\color{#3D99F6}\frac {\tan^2 x + 2x\tan x \sec^2 x}{\sec^2 x - 1}} -1 \right)^{-1} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = \lim_{x \to 0} \left(\frac {\tan^2 x + 2x\tan x \sec^2 x}{\tan^2 x} -1 \right)^{-1} \\ & = \lim_{x \to 0} \left(1 + {\color{#3D99F6}\frac {2x}{\tan x}} + \tan x -1 \right)^{-1} & \small \color{#3D99F6} \text{A 0/0 case again} \\ & = \lim_{x \to 0} \left({\color{#3D99F6} \frac 2{\sec^2 x}}\right)^{-1} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = \frac 12 = \boxed{0.5} \end{aligned}

lim n 1 2 n sin ( 2 π n ) π SquaredEuclideanDistance [ { 0 , 0 } , 1 2 { cos ( 2 π n ) + 1 , sin ( 2 π n ) } ] π 1 2 n sin ( 2 π n ) 1 2 \underset{n\to \infty }{\text{lim}}\frac{\frac{1}{2} n \sin \left(\frac{2 \pi }{n}\right)-\pi \text{SquaredEuclideanDistance}\left[\{0,0\},\frac{1}{2} \left\{\cos \left(\frac{2 \pi }{n}\right)+1,\sin \left(\frac{2 \pi }{n}\right)\right\}\right]}{\pi -\frac{1}{2} n \sin \left(\frac{2 \pi }{n}\right)} \Longrightarrow \frac12

A Former Brilliant Member - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...