the remainder is

Algebra Level 2

What is the reminder when 7 103 7^{103} is divided by 25 25 ?


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

7 103 49 51 × 7 ( m o d 25 ) ( 1 ) 51 × 7 ( m o d 25 ) 7 ( m o d 25 ) 18 ( m o d 25 ) 7^{103}\equiv{49}^{51}\times 7\pmod {25}\equiv{(-1)}^{51}\times 7\pmod{25}\equiv-7\pmod{25}\equiv18\pmod{25}

Elijah L
Jan 4, 2020

Instead of analyzing 7 103 ( m o d 25 ) 7^{103} \pmod {25} , let's analyze 7 n ( m o d 50 ) 7^{n} \pmod {50} for small n n .

7 1 ( m o d 50 ) 7 ( m o d 50 ) 7^{1} \pmod {50} \equiv 7 \pmod {50}

7 2 ( m o d 50 ) 1 ( m o d 50 ) 7^{2} \pmod {50} \equiv -1 \pmod {50}

7 3 ( m o d 50 ) 7 ( m o d 50 ) 7^{3} \pmod {50} \equiv -7 \pmod {50}

7 4 ( m o d 50 ) 1 ( m o d 50 ) 7^{4} \pmod {50} \equiv 1 \pmod {50}

7 5 ( m o d 50 ) 7 ( m o d 50 ) 7^{5} \pmod {50} \equiv 7 \pmod {50}

7 6 ( m o d 50 ) 1 ( m o d 50 ) 7^{6} \pmod {50} \equiv -1 \pmod {50}

7 7 ( m o d 50 ) 7 ( m o d 50 ) 7^{7} \pmod {50} \equiv -7 \pmod {50}

7 8 ( m o d 50 ) 1 ( m o d 50 ) 7^{8} \pmod {50} \equiv 1 \pmod {50}

There is a clear pattern. 7 4 k + n ( m o d 50 ) 7 n ( m o d 50 ) 7^{4k+n} \pmod {50} \equiv 7^{n} \pmod {50} , where k Z + k \in \Z^{+} .

From this pattern, we can conclude that

7 103 ( m o d 50 ) 7 3 ( m o d 50 ) 7^{103} \pmod {50} \equiv 7^{3} \pmod {50} .

We can calculate that 7 3 = 343 7^{3} = 343 , and 343 ( m o d 25 ) = 18 343 \pmod {25} = \boxed {18} .

(This is my first LaTeX \LaTeX solution, please cut me some slack if my formatting is improper)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...