The Return II

Calculus Level 4

0 π x sin x 1 + cos 2 x d x = π a b \large \int_{0}^{\pi}\frac{x\sin{x}}{1+\cos^{2} x}dx=\frac{\pi^{a}}{b}

Find a + b a+b .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 π x sin x 1 + cos 2 x d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π ( x sin x 1 + cos 2 x + ( π x ) sin ( π x ) 1 + cos 2 ( π x ) ) d x = 1 2 0 π ( x sin x 1 + cos 2 x + ( π x ) sin x 1 + cos 2 x ) d x = 1 2 0 π π sin x 1 + cos 2 x d x = π 2 0 π d sin x 1 + cos 2 x = π 2 tan 1 ( cos x ) π 0 = π 2 4 \begin{aligned} I & = \int_0^\pi \frac {x\sin x}{1+\cos^2 x} dx & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\pi \left(\frac {x\sin x}{1+\cos^2 x} + \frac {(\pi-x)\sin (\pi-x)}{1+\cos^2 (\pi-x)} \right) dx \\ & = \frac 12 \int_0^\pi \left(\frac {x\sin x}{1+\cos^2 x} + \frac {(\pi-x)\sin x}{1+\cos^2 x} \right) dx \\ & = \frac 12 \int_0^\pi \frac {\pi \sin x}{1+\cos^2 x} dx \\ & = \frac \pi 2 \int_0^\pi \frac {-d \sin x}{1+\cos^2 x} \\ & = \frac \pi 2 \tan^{-1} (\cos x) \bigg|_\pi^0 \\ & = \frac {\pi^2}4 \end{aligned}

Therefore, a + b = 2 + 4 = 6 a+b=2+4 = \boxed 6 .

@Hummus a , Glad you are posting problems again!

First Last - 2 years, 7 months ago
Taisanul Haque
Nov 4, 2018

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...