The return of me.

Geometry Level 4

The figure below illustrates an orange, acute triangle and two blue, equilateral triangles.

Calculate a a .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marcus Luebke
Jan 30, 2019

I will be using radians and will use many obscure and specific trigonometric identities, noted by = \stackrel{*}{=} . Also, I will define q = 3 2 q=\frac{\sqrt{3}}{2} and 2 s = t = τ 6 = 2 π 6 2s=t=\frac{\tau}{6}=\frac{2\pi}{6} for convenience. Also, I am scaling the dimensions so that the length on the bottom is 1 instead of twelve; after everything is done I'm just gonna multiply a a by 12.

I will Cartesian coordinates, with the bottom left corner of the orange triangle at the origin, and the bottom line of that triangle on the x-axis. Let all the points of intersection be labelled A A - H H , starting with the origin A A , and moving clockwise around the figure. Some notes:

  • The blue equilateral triangles are A B D \triangle ABD and D E G \triangle DEG

  • The orange triangle is A D G \triangle ADG .

  • Because B D A = G D E = t \angle BDA=\angle GDE=t and D D is on B E \overline{BE} , then A D G = t \angle ADG=t

  • The angle C H F \angle CHF has angle τ 4 \frac{\tau}{4}

  • C C is the midpoint of B D \overline{BD}

  • F F is the midpoint of E G \overline{EG}

  • H H is on A G \overline{AG}

  • G E \overline{GE} is parallel to A D \overline{AD} . This is because the angles A D G \angle ADG and D G E \angle DGE are equal.

Let h = A D h=|AD| , and β = D A G \beta=\angle DAG . Then, the equation for A D \overline{AD} is: y = tan ( β ) x y=\tan(\beta)x , and likewise A B : y = tan ( β + t ) x \overline{AB}: y=\tan(\beta+t)x . Thus, D = ( h cos ( β ) , h sin ( β ) ) D=(h\cos(\beta),h\sin(\beta)) and B = ( h cos ( β + t ) , h sin ( β + t ) ) B=(h\cos(\beta+t),h\sin(\beta+t)) , from which we can gather that C = ( h cos ( β + t ) + cos ( β ) 2 , h sin ( β + t ) + sin ( β ) 2 ) = ( q h cos ( β + s ) , q h sin ( β + s ) ) C=(h\frac{\cos(\beta+t)+\cos(\beta)}{2},h\frac{\sin(\beta+t)+\sin(\beta)}{2})\stackrel{*}{=}(qh\cos(\beta+s),qh\sin(\beta+s)) . Finally, we gather that B D : y = tan ( β t ) ( x h cos ( β ) ) + h sin ( β ) \overline{BD}:y=\tan(\beta-t)(x-h\cos(\beta))+h\sin(\beta) .

Now, we get the equation for D G \overline{DG} . We know that because B D A = G D E = t \angle BDA=\angle GDE=t , then the upper angle of the triangle is also A D G = t \angle ADG=t . Thus, D G : y = tan ( β 2 t ) ( x h cos ( β ) ) + h sin ( β ) \overline{DG}:y=\tan(\beta-2t)(x-h\cos(\beta))+h\sin(\beta) . We then calculate the y-intercept to find G G , and constrain G = ( 1 , 0 ) G=(1,0) by defining h h . 0 = tan ( β 2 t ) ( x h cos ( β ) ) + h sin ( β ) x = h ( cos ( β ) sin ( β ) tan ( β 2 t ) ) = q h sec ( β s ) = 1 h = 1 q sec ( β s ) 0=\tan(\beta-2t)(x-h\cos(\beta))+h\sin(\beta)\implies x=h(\cos(\beta)-\frac{\sin(\beta)}{\tan(\beta-2t)})\stackrel{*}{=}qh\sec(\beta-s)=1\implies h=\frac{1}{q\sec(\beta-s)} .

From here, we find the equation for G E : y = tan ( β ) ( x 1 ) \overline{GE}:y=\tan(\beta)(x-1) (remember it is parallel to A D \overline{AD} ). We then calculate the intersection of this line with B D : y = tan ( β t ) ( x h cos ( β ) ) + h sin ( β ) \overline{BD}:y=\tan(\beta-t)(x-h\cos(\beta))+h\sin(\beta) to get tan ( β ) ( x 1 ) = tan ( β t ) ( x h cos ( β ) ) + h sin ( β ) = tan ( β t ) ( x cos ( β ) q sec ( β s ) ) + sin ( β ) q sec ( β s ) \tan(\beta)(x-1)=\tan(\beta-t)(x-h\cos(\beta))+h\sin(\beta)=\tan(\beta-t)\left(x-\frac{\cos(\beta)}{q\sec(\beta-s)}\right)+\frac{\sin(\beta)}{q\sec(\beta-s)}

( tan ( β ) tan ( β t ) ) x = tan ( β ) tan ( β t ) cos ( β ) q sec ( β s ) + sin ( β ) q sec ( β s ) x = tan ( β ) tan ( β t ) cos ( β ) q sec ( β s ) + sin ( β ) q sec ( β s ) tan ( β ) tan ( β t ) = 1 + 1 q sin ( β ) cos ( β ) \implies (\tan(\beta)-\tan(\beta-t))x=\tan(\beta)-\tan(\beta-t)\frac{\cos(\beta)}{q\sec(\beta-s)}+\frac{\sin(\beta)}{q\sec(\beta-s)}\implies x=\frac{\tan(\beta)-\tan(\beta-t)\frac{\cos(\beta)}{q\sec(\beta-s)}+\frac{\sin(\beta)}{q\sec(\beta-s)}}{\tan(\beta)-\tan(\beta-t)}\stackrel{*}{=} 1+\frac{1}{q}\sin(\beta)\cos(\beta) . We then solve for y y , and use this to find the equation for E E . y = tan ( β ) ( x 1 ) = tan ( β ) ( 1 q sin ( β ) cos ( β ) ) = 1 q sin 2 ( β ) E = ( 1 + 1 q sin ( β ) cos ( β ) , 1 q sin 2 ( β ) ) F = ( 1 + 1 2 q sin ( β ) cos ( β ) , 1 2 q sin 2 ( β ) ) y=\tan(\beta)(x-1)=\tan(\beta)(\frac{1}{q}\sin(\beta)\cos(\beta))=\frac{1}{q}\sin^2(\beta) \implies E=(1+\frac{1}{q}\sin(\beta)\cos(\beta),\frac{1}{q}\sin^2(\beta)) \implies F=(1+\frac{1}{2q}\sin(\beta)\cos(\beta),\frac{1}{2q}\sin^2(\beta)) .

Finally, we will define a = A H a=|AH| , find H D \overline{HD} , and write an equation for a a that checks if F F is on the perpendicular. H D : y = h sin ( β + t ) h cos ( β + t ) a ( x a ) \overline{HD}:y=\frac{h\sin(\beta+t)}{h\cos(\beta+t)-a}(x-a) and the perpendicular takes the negative inverse of the slope to get H D : y = a h sin ( β + t ) h cos ( β + t ) ( x a ) \bot\overline{HD}:y=\frac{a-h\sin(\beta+t)}{h\cos(\beta+t)}(x-a) . Plugging the values of F F into the equation, we get 1 2 q sin 2 ( β ) = a h sin ( β + t ) h cos ( β + t ) ( 1 + 1 2 q sin ( β ) cos ( β ) a ) \frac{1}{2q}\sin^2(\beta)=\frac{a-h\sin(\beta+t)}{h\cos(\beta+t)}(1+\frac{1}{2q}\sin(\beta)\cos(\beta)-a) . This is parabolic in a a , so for any given angle β \beta there are almost always two solutions. However, only one of them is true for all β \beta ; when a = 0.75 a=0.75 . Thus, this is the value we are looking for.

Multiplying by 12 to get the answer to the problem, we find that the answer is 12 0.75 = 9 12*0.75=9 .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...