A calculus problem by Aaron Jerry Ninan

Calculus Level 4

0 ( 2 x 2 + 1 ) e x 2 d x \large \int_{0}^{\infty }(2x^2 +1)e^{-x^{2}} \, dx

Find the value of closed form of the integral above to 2 decimal places.


The answer is 1.77.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Gamma Function

I = 0 ( 2 x 2 + 1 ) e x 2 d x = 0 2 x 2 e x 2 d x + 0 e x 2 d x = 2 0 x 2 × 3 2 1 e x 2 d x + 2 2 0 x 2 × 1 2 1 e x 2 d x = Γ ( 3 2 ) + 1 2 Γ ( 1 2 ) Γ ( z ) is gamma function. = 1 2 Γ ( 1 2 ) + 1 2 Γ ( 1 2 ) = Γ ( 1 2 ) = π 1.77 \begin{aligned} I & = \int_0^\infty (2x^2+1) e^{-x^2} \ dx \\ & = \int_0^\infty 2x^2e^{-x^2} \ dx + \int_0^\infty e^{-x^2} \ dx \\ & = 2 \int_0^\infty x^{2\times {\color{#D61F06}\frac 32} - 1} e^{-x^2} \ dx + \frac 22 \int_0^\infty x^{2\times {\color{#D61F06}\frac 12} - 1} e^{-x^2} \ dx \\ & = \Gamma \left({\color{#D61F06}\frac 32}\right) + \frac 12 \Gamma \left({\color{#D61F06}\frac 12}\right) & \small \color{#3D99F6} \Gamma (z) \text{ is gamma function.} \\ & = \frac 12 \Gamma \left(\frac 12\right) + \frac 12 \Gamma \left(\frac 12\right) \\ & = \Gamma \left(\frac 12\right) = \sqrt \pi \approx \boxed{1.77} \end{aligned}

Can we solve this problem with elementary methods.I think there exists a solution which uses only elementary methods.

Aaron Jerry Ninan - 4 years, 4 months ago

Log in to reply

Sorry, not that I know of.

Chew-Seong Cheong - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...