If the roots of the equation
x 2 + x 2 + 1 1 + x 2 − x 2 + 1 1 = 4
are of the form a ± b , where a and b are integers, find the value of a 2 + 3 a b + b 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Those are really good
you wrote that y = x^2 + 11 but y = \sqrt{ x^2 + 11}
x 2 + x 2 + 1 1 = a , x 2 − x 2 + 1 1 = b
a − b = 2 x 2 + 1 1
2 a = 2 5 x 2 + 1 1
1 6 ( x 2 + x 2 + 1 1 ) = x 2 + 1 1
Let n = x 2 + 1 1
So the equation becomes:
x 2 + n + x 2 − n = 4
( x 2 + n ) + 2 ( x 2 + n ) ( x 2 − n ) + ( x 2 − n ) = 1 6
2 x 2 = 1 6 − 2 ( x 2 + n ) ( x 2 − n )
x 2 = 8 − ( x 2 + n ) ( x 2 − n )
( 8 − x 2 ) 2 = ( x 2 + n ) ( x 2 − n )
6 4 − 1 6 x 2 + x 4 = x 4 − n 2
6 4 − 1 6 x 2 = − ( x 2 + 1 1 ) (substitute back in the value of n )
Solving the quadratic equations gives: x = 0 ± 5 = a ± b
So a = 0 and b = 5 . Substitute the values of a and b into the equation and obtaining 2 5
Problem Loading...
Note Loading...
Set Loading...
Given: x 2 + x 2 + 1 1 + x 2 − x 2 + 1 1 = 4
Putting x 2 + 1 1 = y , we get,
y 2 + y − 1 1 + y 2 − y − 1 1 = 4 − − − − − − − − ( 1 )
We also have the identity
( y 2 + y − 1 1 ) − ( y 2 − y − 1 1 ) = 2 y − − − − − − − ( 2 )
Dividing 2 by 1 , we get,
y 2 + y − 1 1 − y 2 − y − 1 1 = 2 y − − − − − − − ( 3 )
Adding 1 and 3 , we get,
2 ( y 2 + y − 1 1 ) = 4 + 2 y
⟹ y 2 + y − 1 1 = 4 + y + 1 6 y 2
⟹ y = 4
⟹ x = ± 5
⟹ a 2 + 3 a b + b 2 = 2 5