The Root Of All Roots

Algebra Level 4

If the roots of the equation

x 2 + x 2 + 11 + x 2 x 2 + 11 = 4 \sqrt {x^2 + {\sqrt { x^2+11}}} + \sqrt {x^2 - {\sqrt {x^2+11}}} = 4

are of the form a ± b a \pm \sqrt{b} , where a a and b b are integers, find the value of a 2 + 3 a b + b 2 a^2 + 3ab +b^2 .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ishan Singh
May 27, 2014

Given: x 2 + x 2 + 11 + x 2 x 2 + 11 = 4 \sqrt{x^2+ \sqrt{x^2+11}} + \sqrt{x^2- \sqrt{x^2+11}} =4

Putting x 2 + 11 = y \sqrt {x^2+11} = y , we get,

y 2 + y 11 + y 2 y 11 = 4 ( 1 ) \sqrt {y^2 + y -11} + \sqrt{y^2-y-11} =4 -------- \ (1)

We also have the identity

( y 2 + y 11 ) ( y 2 y 11 ) = 2 y ( 2 ) (y^2+y-11) - (y^2-y-11) =2y ------- \ (2)

Dividing 2 by 1 , we get,

y 2 + y 11 y 2 y 11 = y 2 ( 3 ) \sqrt{y^2+y-11} - \sqrt{y^2-y-11} =\frac{y}{2} ------- \ (3)

Adding 1 and 3 , we get,

2 ( y 2 + y 11 ) = 4 + y 2 2( \sqrt{y^2+y-11}) =4 + \frac{y}{2}

y 2 + y 11 = 4 + y + y 2 16 \implies y^2+y-11=4+y+ \frac{y^2}{16}

y = 4 \implies y=4

x = ± 5 \implies x=\pm \sqrt{5}

a 2 + 3 a b + b 2 = 25 \implies a^2 + 3ab + b^2 = \boxed{25}

Those are really good

Bill Le - 7 years ago

you wrote that y = x^2 + 11 but y = \sqrt{ x^2 + 11}

ahmed hussein - 6 years, 11 months ago

x 2 + x 2 + 11 = a , x 2 x 2 + 11 = b x^2 + \sqrt{x^2 + 11} = a , x^2 - \sqrt{x^2 + 11} = b

a b = 2 x 2 + 11 a - b = 2 \sqrt{x^2 + 11}

2 a = 5 2 x 2 + 11 2\sqrt{a} = \dfrac{5}{2} \sqrt{x^2 + 11}

16 ( x 2 + x 2 + 11 ) = x 2 + 11 16(x^2 + \sqrt{x^2 + 11}) =x^2 + 11

U Z - 6 years, 4 months ago
William Isoroku
Jan 31, 2015

Let n = x 2 + 11 n=\sqrt { { x }^{ 2 }+11 }

So the equation becomes:

x 2 + n + x 2 n = 4 \sqrt { { x }^{ 2 }+n } +\sqrt { { x }^{ 2 }-n } =4

( x 2 + n ) + 2 ( x 2 + n ) ( x 2 n ) + ( x 2 n ) = 16 { (x }^{ 2 }+n)+2\sqrt { ({ x }^{ 2 }+n)({ x }^{ 2 }-n) } +({ x }^{ 2 }-n)=16

2 x 2 = 16 2 ( x 2 + n ) ( x 2 n ) { 2x }^{ 2 }=16-2\sqrt { ({ x }^{ 2 }+n)({ x }^{ 2 }-n) }

x 2 = 8 ( x 2 + n ) ( x 2 n ) { x }^{ 2 }=8-\sqrt { ({ x }^{ 2 }+n)({ x }^{ 2 }-n) }

( 8 x 2 ) 2 = ( x 2 + n ) ( x 2 n ) { (8-{ x }^{ 2 } })^{ 2 }=({ x }^{ 2 }+n)({ x }^{ 2 }-n)

64 16 x 2 + x 4 = x 4 n 2 64-16{ x }^{ 2 }+{ x }^{ 4 }={ x }^{ 4 }-{ n }^{ 2 }

64 16 x 2 = ( x 2 + 11 ) 64-16{ x }^{ 2 }=-({ x }^{ 2 }+11) (substitute back in the value of n n )

Solving the quadratic equations gives: x = 0 ± 5 = a ± b x=0\pm \sqrt { 5 } =a\pm \sqrt { b }

So a = 0 a=0 and b = 5 b=5 . Substitute the values of a a and b b into the equation and obtaining 25 \boxed{25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...